UNIVERSIDAD NACIONAL AMAZÓNICA DE MADRE DE DIOS FACULTAD DE INGENIERÍA

ESCUELA PROFESIONAL DE INGENIERÍA FORESTAL Y MEDIO AMBIENTE

"ESTRUCTURA, DIVERSIDAD Y COMPOSICIÓN FLORÍSTICA ARBÓREA
DE UN BOSQUE DE TERRAZA ALTA DEL SECTOR LOBOYOC,
DISTRITO DE LAS PIEDRAS, PROVINCIA DE TAMBOPATA, MADRE DE
DIOS"

TESIS PRESENTADO POR:

Bachiller: CARHUARUPAY ESPEJO Silvia Liliana.

Para optar el Titulo profesional de Ingeniero

Forestal y Medio Ambiente.

ASESOR: Ing. MANRIQUE LEON Saúl.

Puerto Maldonado - Madre de Dios.

UNIVERSIDAD NACIONAL AMAZÓNICA DE MADRE DE DIOS FACULTAD DE INGENIERÍA

ESCUELA PROFESIONAL DE INGENIERÍA FORESTAL Y MEDIO AMBIENTE

"ESTRUCTURA, DIVERSIDAD Y COMPOSICIÓN FLORÍSTICA ARBÓREA
DE UN BOSQUE DE TERRAZA ALTA DEL SECTOR LOBOYOC,
DISTRITO DE LAS PIEDRAS, PROVINCIA DE TAMBOPATA, MADRE DE
DIOS"

TESIS PRESENTADO POR:

Bachiller: CARHUARUPAY ESPEJO Silvia Liliana.

Para optar el Titulo profesional de Ingeniero

Forestal y Medio Ambiente.

ASESOR: Ing. MANRIQUE LEON Saúl.

Puerto Maldonado - Madre de Dios.

2018

DEDICATORIA

A Dios todopoderoso porque es la luz de los pasos que doy, cuidándome y dándome toda la fuerza para continuar, a mis padres adorados por ser inspiración de toda mi vida.

A mi hermana por compartir muchas vivencias conmigo.

A mí querido esposo y a mi hijo amado Giancarlo, por ser pilar y motivo para la realización de este trabajo de investigación.

A mis maestros a quienes hoy por hoy debo mucho de mis conocimientos, gracias a su aguante y sabiduría, finalmente un perdurable reconocimiento a esta gloriosa universidad que abre sus puertas a juventudes como nosotros, preparándonos para un futuro competidor y formándonos como personas de buen ejemplo.

AGRADECIMIENTOS

A mi alma mater, la Universidad Nacional Amazónica de Madre de Dios, por haberme brindado todas las facilidades en estos años de estudios de pregrado.

A la Facultad de Ingeniería y a la Escuela Profesional de Ingeniería Forestal y Medio Ambiente de la Universidad Nacional Amazónica de Madre de Dios, por brindarme la oportunidad de formarme en sus aulas para mi superación académica y profesional.

A todos los docentes de la Facultad de Ingeniería, por todas sus enseñanzas, su paciencia y motivación para la culminación de mis estudios de pregrado; a todos mis compañeros de aula por compartir sus conocimientos, enseñanzas, amistad y camaradería.

Un agradecimiento especial a mi asesor el Ingeniero Saúl Manrique León por la asesoría de la presente tesis y por su amistad en todos estos años.

Al Centro de Investigación Herbario "Alwyn Gentry" de la Universidad Nacional Amazónica de Madre de Dios, por darme todas las facilidades para la identificación de los especímenes vegetales.

Al Administrador del Vivero el Bosque de la UNAMAD, por brindarme todas las facilidades para el trabajo de campo.

RESUMEN

Esta presente investigación tuvo como objetivo conocer la estructura, riqueza, diversidad específica de árboles, y la composición florística del bosque de terraza alta en el sector de Loboyoc, Distrito de las Piedras, Provincia de Tambopata, Madre de Dios. Para esto se evaluaron 5 bloques de 500 x 500 m (25 ha), en cada bloque se seleccionaron 2 ha de bosque de 20 x 500 m, lo que hace un total de 10 ha. Se determinaron la riqueza, dominancia, diversidad, composición florística y el Índice de Valor de Importancia; mediante la distancia de Jaccard, se evaluó la similitud entre parcelas. Se determinó que la composición florística comprendió de 442,9 árboles/ha ≥ 10 cm Dap. distribuidos en especies, géneros y familias. La clase diamétrica que va de 6 a 17,99 m es la que tuvo el mayor número de árboles (327,3 arb/ha). En cuanto a la riqueza de árboles para este tipo de bosque se concluyó que son relativamente bajos respecto a otros tipos de bosque. La similitud y disimilitud entre parcelas señala una mediana similitud en su composición florística. La familia Fabaceae fue la más representativa con 25 géneros 38 especies, siendo los géneros Inga y Protium los que registraron el mayor número de especies; en tanto, la familia más abundante con el mayor número de individuos fue Moraceae con 62 individuos/ha; asimismo, la composición florística para las 15 especies más abundantes con el mayor número de individuos estuvo representado por: Tetragastris altissima (25,4 individuos/ha).

ABSTRACT

The aim of this research was to know the structure, richness, specific diversity of trees, and the floristic composition of the high terrace forest in the sector of Loboyoc, district of the Stones, province of Tambopata, Mother of God. For this we evaluated 5 blocks of 500 x 500 m (25 ha), each block was selected 2 ha of forest of 20 x 500 m, which makes a total of 10 ha. Richness, dominance, diversity, floristic composition and the value index of importance were determined; By the distance of Jaccard, the similarity between plots was evaluated. It was determined that the floristic composition comprised of 442.9 trees/ha ≥ 10 cm Dap. distributed in species, genera and Families. The diameter class that goes from 6 to 17.99 M is the one that had the largest number of trees (327.3 arb/ha). As for the richness of trees for this type of forest it was concluded that they are relatively low compared to other types of forest. The similarity and dissimilarity between plots indicates a medium similarity in its floristic composition. The family Fabaceae was the most representative with 25 genera 38 species, with the genera Inga and Protium which recorded the largest number of species; Meanwhile, the most abundant family with the largest number of individuals was Moraceae with 62 individuals/ha; Also, the floristic composition for the 15 most abundant species with the highest number of individuals were represented by: Tetragastris Altissima (25.4) individuals/ha).

INTRODUCCIÓN

"Los bosques amazónicos han sido incluidos dentro de los más biodiversos del planeta (Gentry 1988^a, 1992). Muchas ilustraciones enfocan intentar cuantificar la diversidad y describir la composición florística de la Amazonía para declarar por qué es una de las zonas terrestres más diversas del mundo (Gentry 1988, 1992; Wills *et al.* 1997; Terborgh y Andresen 1998; Ter Steege *et al.* 2000; Colinvaux y De Oliveira 2001; Pitman *et al.* 2002, Wright 2002; Jaramillo *et al.* 2006). Para deducir los patrones ecológicos de la Amazonía a un nivel continental, es significativo hacer estudios a escalas locales y regionales en los que se representen y se cuantifiquen las características de los bosques amazónicos" (Stropp *et al.* 2009).

"Los bosques tropicales son medios de gran diversidad biológica, en los cuales se localizan aproximadamente 50% de las especies terrestres (Heywood 1995). Estos además ofrecen servicios eco sistémicos con impacto a nivel global (Balvanera 2012), ya que procesan y almacenan cantidades específicas de carbono (Denman et al. 2007) y originan la formación de nubes y lluvia a nivel regional (Bala et al. 2007). Los bosques del Amazonas juegan un papel trascendental en el ciclo de carbono, se ha estimado que estos bosques procesan anualmente mediante fotosíntesis y respiración 18 Pg. C, lo que equivale cerca de más del doble del CO2 por emisiones de origen fósil (Mahli y Grace 2000). Debido a su contribución en el ciclo de carbono y cambios relativamente pequeños en la dinámica de los bosques del Amazonas pueden potencialmente perturbar la concentración de CO2 en la atmósfera y afectar la tasa de cambio climático" (Phillips et al. 2009a).

La instalacion y evaluación periódica de parcelas permanentes en los trópicos ha favorecido la comprensión de la dinámica y biodiversidad de los bosques tropicales y su analogía con la meteorología y suelos locales. El propósito fundamental de la presente investigación fue determinar la estructura del bosque a través de la estructura vertical y la estructura

horizontal del bosque de terraza alta a través del cálculo y análisis de diferentes variables, parámetros de la comunidad: riqueza de especies, diversidad alfa, composición florística a nivel de familias, géneros y especies, análisis del Índice de Valor de Importancia de las especies (IVI), Similitud e índice de distancia de Jaccard para datos de ausencia/presencia, y el índice de Sorensen para la similitud de parcelas para datos cuantitativos. Se utilizó para reducir la dimensionalidad de los datos el Análisis de Componentes Principales (PCA), y conocer la distribución de las especies más dominantes en el área de investigación.

ÍNDICE

INTROD	UC	CIÓN	1
CAPÍTU	LO	I: PLANTEAMIENTO DEL PROBLEMA	10
1.1.	Des	cripción del problema	10
1.2.	Forr	mulación del problema	11
1.2.	1.	Problema Principal	11
1.3.	Just	tificación e importancia	11
1.4.	Obje	etivos:	12
1.4.	1.	Objetivo general:	13
1.4.	2.	Objetivos específicos:	13
CAPÍTU	LO	II: MARCO TEÓRICO	14
2.1.	Ante	ecedentes del estudio a nivel internacional	14
2.2.	Ante	ecedentes a nivel nacional	19
2.3.	Ante	ecedentes a nivel regional	22
2.4. 1 ha.		ceptos básicos aplicados en el presente estudio de parcelas d	е
2.4.	1.	Árbol	29
2.4.	2.	Bosque	29
2.4.	3.	Diversidad biológica	30
2.4.	4.	Niveles de diversidad	32
2.4.	5.	Inventario florístico	32
2.4.	6.	Composición florística	33
2.4.	7.	Estructura del bosque	33
2.4.	8.	Hipótesis, variables, indicadores y definiciones operacionales.	37
2.4.	9.	Variables, indicadores y definiciones operacionales	37
CAPÍTU	LO	III: MATERIALES Y MÉTODOS	39
3.1.	MA	TERIALES, EQUIPOS Y HERRAMIENTAS	39
3.1.1	1.	Materiales:	39
3.2.	ME	TODOLOGÍA	40
3.2.1	1.	Ubicación del área de estudio	40
3.2.2	2.	Ccaracterísticas ecológicas del área	46
3.2.3	3.	Análisis estadístico	46
3.2.4	4.	Técnica de análisis de datos	48
3.2.5	5.	Análisis multivariado	53
CAPÍTU	LO	IV: RESULTADOS Y DISCUSIÓN	55
4.1. D	e la	estructura del bosque	55

	4.1.1. De la estructura vertical del bosque	55
	4.1.2. De la estructura horizontal del bosque	57
	4.1.3. De la riqueza y diversidad de especies	59
	4.1.4. De la composición florística	61
	4.1.5. Análisis global de la composición florística para toda el área de estudio	67
	4.1.6. Del índice de valor de importancia de especies (IVI)	68
	4.1.7. De la similitud de las parcelas (índice de similaridad de jaccard)	73
	4.1.8. Análisis de componentes principales (PCA)	75
REC	COMENDACIONES	80
REF	FERENCIA BIBLIOGRAFICA	84

INDICE DE TABLAS

Tabla 1. Variables e Indicadores37
Tabla 2. Ubicación de las parcelas de estudio en un bosque de tierra firme, en el la localidad de Loboyoc, Distrito las Piedras, Provincia de
Tambopata41
Tabla 3. Representa los diferentes taxa de árboles con sus valores respectivos
Tabla 4. Similitud e índice de Distancia de Jaccard, para 10 parcelas de 1 ha
en bosque de tierra firme74

INDICE DE FIGURAS

Figura 1. Ubicación del área de estudio, bosque de tierra firme, localidad
Loboyoc, Distrito las Piedras, Provincia Tambopata; departamento de Madre
de Dios42
Figura 2. Ubicación de las parcelas de estudio, bosque de terraza alta,
sector Loboyoc, Distrito las Piedras, Provincia Tambopata; departamento de
Madre de Dios43
Figura 3. Ubicación de las parcelas de estudio, bosque de terraza alta,
sector Loboyoc, Distrito las Piedras, Provincia de Tambopata, Departamento
de Madre de Dios44
Figura 4. Ubicación de las parcelas de estudio, bosque de terraza alta,
sector Loboyoc, Distrito las Piedras, Provincia Tambopata; departamento de
Madre de Dios45
Figura 5. Representa el número de árboles para las diferentes clases
altimétricas para toda el área de estudio56
Figura 6. Representa el porcentaje de las diferentes clases altimétricas para
toda el área de estudio
Figura 7. Representa el número de árboles para las diferentes clases
dimétricas para toda el área de estudio57
Figura 8. Representa el número de árboles para las diferentes clases
diamétricas para toda el área de estudio58
Figura 9. Representa el número de especies y el número de individuos para
las 10 parcelas diferentes de 1 ha, en bosque de terraza alta, Tambopata60
Figura 10. Representa los índices de diversidad de Sahnnon_H y de
Fisher_alpha para las 10 parcelas en bosque de terraza alta, Tambopata61
Figura 11. Representa el número de familias vs el número de géneros más
abundantes para toda el área de estudio62
Figura 12. Representa el número de familias vs el número de especies más
abundantes para toda el área de estudio63
Figura 13. Representa el número de familias vs el número de individuos
más abundantes para toda el área de estudio64
Figura 14. Representa el número de géneros vs el número de especies más
abundantes para toda el área de estudio

Figura 15. Representa el número de géneros vs el número de individuos más
abundantes para toda el área de estudio66
Figura 16. Representa el número de especies vs el número de individuos
más abundantes para toda el área de estudio67
Figura 17. Representa la composición florística y el número total de taxa
para toda el área de estudio68
Figura 18. Representa la abundancia relativa para las 15 especies más
abundantes para toda el área de estudio69
Figura 19. Representa la frecuencia relativa para las 15 especies más
frecuentes para toda el área de estudio70
Figura 20. Representa la dominancia relativa para las 15 especies más
frecuentes para toda el área de estudio71
Figura 21.Representa el IVI de las 15 especies con el más óptimo
crecimiento en el bosque73
Figura 22. La figura muestra el índice de similaridad y distancia de Jaccarad.
Paired Group (UPGM), con un coeficiente de Correlación de 0.8624 para 10
parcelas

INDICE DE ANEXOS

Anexo 1. Croquis de ubicación de las parcelas en el Vivero Fundo UNAMAD,
localidad Loboyoc, Distrito Las Piedras, Provincia Tambopata, Dpto
Madre de Dios93
Anexo 2. Clases Diamétricas para todo el área de estudio (10 parcelas de 1
ha, en un bosque de tierra firme)94
Anexo 3. Clases Altímetricas para todo el área de estudio (10 parcelas de 1
ha, en un bosque de tierra firme)94
Anexo 4. Matriz para Riqueza y Diversidad95
Anexo 5. Riqueza Específica e Índices de Diversidad de Especies103
Anexo 6. Riqueza Específica e índices de diversidad de Shannon_H y
Fisher_alpha para diez parcelas en un bosque de tierra firme103
Anexo 7. Composición Florística Total del área de estudio104
Anexo 8. Comparación de la riqueza de especies de árboles ≥ 10 cm dap en
bosque de tierra firme Departamento de Madre de Dios106
Anexo 9. Composición florística familias vs especies para todo el área de
estudio107
Anexo 10. Composición florística familias vs individuos
Anexo 11. Composición florística géneros vs especies para todo el área de
estudio111
Anexo 12. Composición florística géneros vs individuos para todo el área de
estudio117
Anexo 13. Composición florística especies vs individuos para todo el área de
estudio
Anexo 14. Representa la Abundancia Relativa de las 15 especies más
abundantes para toda el área de estudio131
Anexo 15. Representa la frecuencia relativa de las 15 especies más
frecuentes para toda el área de estudio131
Anexo 16. Representa la Dominancia Relativa de las 15 especies más
dominantes para toda el área de estudio132
Anexo 17. Representa el IVI al 100% de las de las 15 especies de más
óptimo crecimiento para toda el área de estudio133
Anexo 18. Valores de del Índice de Similaridad y Distancia de Jaccard134

Anexo 19. Dendrograma de Similitud de Jaccard	.134
Anexo 20. Matriz de las 15 especies con valores más altos de abundanc	ia
relativa para el análisis de componentes principales (PCA)	.135
Anexo 21. Matriz de las 15 especies con valores transformados e	∍n
procentajes de abundancia relativa para el Análisis d	ek
Componentes Principales (PCA)	.136
Anexo 22. Cuadro resumen de los Componentes Principales y valores o	ek
Varianza de PCA	.137

CAPÍTULO I: PLANTEAMIENTO DEL PROBLEMA

1.1. Descripción del problema

Los bosques tropicales húmedos son uno de los ecosistemas más esenciales de nuestro planeta, donde se concentra una gran variedad de especies vegetativas, que constituyen una reserva de la diversidad de recursos genéticos. Estos recursos prestan servicios ambientales de gran trascendencia desde la conservación de los suelos y las cuencas hidrográficas a la protección frente a las inundaciones, y otros desastres naturales y son fuentes importantes de ingresos turísticos.

Desde el punto de vista internacional, los bosques pueden contribuir decisivamente a mantener el equilibrio climático con su función de depósitos y sumideros de carbono mediante los bosques en pie que son fuentes de reservorio de carbono más importante de la Tierra.

Las diversas actividades antropogénicas han causado efectos sobre el bosque, generando la pérdida de hábitat y en consecuencia la disminución de poblaciones de especies de fauna y flora, y un caso especial para el el vivero "El Bosque" UNAMAD, con una extensión boscosa de 424 ha, ubicado en el sector de Loboyoc, distrito de Las Piedras; no se tienen datos globales de la estructura y composición arbórea del bosque, habiéndose encontrado información dispersa y fragmentada sobre el conjunto de especies de flora con las que cuenta esta importante área.

No hemos encontrado un juego de datos de publicaciones relacionadas con la estructura vertical y horizontal del bosque, de igual manera sobre la riqueza de especies, su composición florística arbórea y sobre estudios de su diversidad beta, es decir sobre la similaridad entre bloques o las respectivas parcelas (recambio de especies), que actualmente, imposibilita realizar comparaciones con otros inventarios de zonas aledañas, y también limita el estudio botánico y ecológico del mismo, previo a este vacío de investigación, es la realización de un inventario botánico que es necesario para determinar la diversidad, composición florística y recuperar el manejo de las plantas arbóreas de importancia y sus respectivos usos; que se enfocara en el área de muestreo de 10 ha.

La presente investigación se enfocará en mejorar el estado actual del Vivero "El Bosque", en función a los resultados obtenidos, para que su aprovechamiento de sus recursos sea razonable, sostenible y que las futuras generaciones tengan el mismo derecho de disfrutar de este bosque tan explotado por madereros en los años anteriores.

1.2. Formulación del problema

1.2.1. Problema Principal

¿Cómo está organizado y caracterizado la estructura, horizontal y vertical de un bosque de terraza alta en el distrito de Las Piedras, Provincia de Tambopata, Madre de Dios?

¿Cuál es la riqueza de especies y la diversidad alpha en un bosque de terraza alta en el distrito de Las Piedras, Provincia de Tambopata, Madre de Dios?

¿Cuál es la composición florística y su patrón de distribución en un bosque de terraza alta?

1.3. Justificación e importancia

Los bosques, específicamente los tropicales, dominan un espacio definido orientados a la preservación de la diversidad biológica. Se estima que gran porción de la biodiversidad del planeta está contenida en los bosques y que tal vez más de las 4/5 partes de muchos grupos de plantas y animales se encuentren en los bosques tropicales.

La Amazonía peruana ha sido considerada, de acuerdo a los últimos estudios taxonómicos y ecológicos, como uno de los principales centros de diversidad vegetal mundial; sin embargo presenta más del 30% de sus especies que son endémicas (Dillon, Sagastegui, Sánchez, Llatas, y Hendsold 1995, Brown y Kappelle 2001, Hamilton 2001), por la presencia de ecosistemas bastante frágiles que vienen siendo fuertemente degradados por presión antrópica, principalmente por extracción de la madera y ampliación de la frontera agropecuaria (GOREMAD Y IIAP 2008).

Madre de Dios es la región amazónica del Perú que reconoce los ascendentes índices de biodiversidad del país, particularidad que le dio el título de Capital de la Biodiversidad del Perú. (Ley Nº 26311, 1994). Lo que simboliza un principio dable de fortuna en las formas de diferentes cultivos, para la industria farmacéutica y otros productos. Si es usado adecuadamente, también seguiremos disponiendo de los servicios primordiales del ecosistema de las especies silvestres, desde el sostén de los ciclos del agua a la nitrificación de los suelos.

Los estudios de estructura y diversidad florística resultan un tema de gran interés para la comunidad científica debido a los aportes que brindan para la dirección y subsistencia de los recursos forestales (Guariguata y Kattan 2002).

La estructura y la composición florística del bosque húmedo tropical son consecuencia de varios factores abióticos y bióticos que han interactuado a través del tiempo. Esta particularidad ha permitido en toda la Amazonía la aparición de ambientes con características únicas, donde los procesos ecológicos son complejos haciendo difícil realizar cualquier tipo de aprovechamiento, sin antes tener información básica de ella (Van Der Hamen 1992, Van Der Hammen y Hooghiemstra 2001).

1.4. Objetivos:

1.4.1. Objetivo general:

✓ Conocer la estructura, diversidad y composición florística de árboles en un bosque de terraza alta en el sector de Loboyoc, Distrito de las Piedras, Provincia de Tambopata, Madre de Dios.

1.4.2. Objetivos específicos:

- ✓ Caracterizar la estructura horizontal y vertical de un bosque de terraza alta en el sector de Loboyoc, distrito Las Piedras, Madre de Dios
- ✓ Analizar la riqueza y diversidad específica de árboles en un bosque de terraza alta.
- ✓ Describir la composición florística de árboles en un bosque de terraza alta.
- ✓ Agrupar las parcelas por sus similitudes florísticas y estructurales.

CAPÍTULO II: MARCO TEÓRICO

2.1. Antecedentes del estudio a nivel internacional

Ter Steege (2013), "la Amazonía continua siendo un enigma para los botánicos, los que no han distinguido cuántas clases de árboles viven en los diversos bosques o incluso qué especie es la más común. En efecto es una palmera muy delgada llamada Euterpe precatoria. Luego de contar hasta 1 170 especies de árboles de los sitios de exploración estudiados por cientos de científicos, un equipo extrapoló el número posible que exista en toda la región. Ellos estiman que la Amazonía tiene cerca de 16 000 especies de árboles (aunque aceptan que el modelo estadístico tiene algunos problemas, como el no tomar en cuenta las particularidades ambientales de varias especies). Sorprendentemente, la mitad de todos los árboles corresponden a sólo 227 especies que dominan en varias regiones, eventualmente porque resisten las enfermedades y herbívoros, como los insectos. Otros pueden haber sido alojados por el hombre antes de que llegaran los europeos. Muchas especies -11 000 son enormemente raros, representando un número 0,12 % de los árboles. La mitad de ellos son posiblemente raros como para ser considerado globalmente amenazada y puede extinguirse antes de ser revelados".

Soler *et.al.* (2012). "Con el objetivo de estudiar la vegetación leñosa de un bosque deciduo tropical, un arbustal y una sábana arbolada, situados en los llanos altos centrales de Venezuela, se definieron dos parcelas muestrales de 400 m² por tipo de vegetación con cuatro parcelas de 100 m² para cada una, donde se censaron las plantas con DAP \geq 10cm . La constitución florística se determinó

mediante el índice de valor de importancia (IVI), la similaridad mediante el índice de Jaccard y la variedad y equitatividad mediante los índices de Shannon-Wienner y Simpson. Según el IVI en el más trascendentes fueron bosque especies cumanenesis (59), Arradidadea pubescens (37,2), Myrospermum frutescens (22,8), Randia spinosa (21,7), y Guazuma ulmifolia (1,9); en el arbustal Combretum fruticosum (60,2), Mimosa tenuiflora (41,3), Guettarda divaricata (38,3) y Arrabidadea pubesecens (34,4); en sabana Byrsonima crassifolia (74,8), Casearia zyzyphoides (57,2) y Curatella americana (50,1). En la vegetación de bosque arbustal y sabana la diversidad de Shannon fue de 2,55; 2,02 y 2,09 y Simpson 8,7; 5,30 y 5,18. La equitatividad fue de 0,80; 0,72 y 0,71 en Shannon y 0,37; 0,32; y 0,28 en Simpson. La similaridad entre los bosques y arbustal fue de 0,39; entre arbustal y sabana 0,21 y entre bosque y sabana 0,18. El bosque fue el más ecuánime al presentar un número menor de especies dominantes. La similaridad florística fue baja en todos los casos, la mayoría de las especies presentes en el bosque no se encontraron en la sabana".

Cano y Stevenson (2009). "En este artículo se levantaron tres parcelas permanentes de vegetación (DAP≥ 10 cm) en una ha en el Vaupés colombiano, en tres tipos de bosques: Colina, terraza e Aguapó (los dos primeros de tierra firme y el tercero inundable). El objetivo fue medir la diversidad y detallar la composición florística en términos de índice de valor de importancia para familias y especies. La parcela más heterogénea fue de la colina (α-Fisher=160,3), seguida por la de terraza ((α-Fisher=78,4) y por la Aguapó (α-Fisher=44,7). La familia Fabaceae fue la más importante en las tres ha, pero en el bosque de terraza la importancia Arecaceae fue similar a la de Fabaceae. También en la composición florística los tres tipos de bosques reflejaron considerablemente desiguales; siendo el inundable el más distinto de los tres. Sin embargo, también encontraron diferencias importantes entre los dos bosques

de tierra firme, que pueden deberse a características abióticas (i.e. suelos diferentes). La alta diversidad reportada en este estudio coincide con la hipótesis que indica que las zonas más diversas de la amazonia son la occidental y la central".

Balcázar y Montero (2001), "ejecutan un estudio de estructura y composición florística de bosques amazónicos en el sector de Pando, para ello inventariaron 15 unidades de muestreo distribuidos en diferentes ambientes. Las unidades de muestreo o réplicas de 1 ha integradas en 10 subparcelas o transectos de 10 x 100m, fueron situados en ambientes más representativos de los diferentes tipos de bosques. En el inventario se incluyeron individuos ≥ 10 cm de DAP, incluyendo palmeras y árboles muertos. Encontraron valor de II y área basal relativa para los 5 tipos florísticos definidos mediante el análisis de correspondencia DCA. Igualmente hicieron un estudio de varianza y comparación de medias por el Método de Bonferrini, que establece diferencias de la diversidad y riqueza con mayores valores para los bosques de tierra firme y del escudo precámbrico; el análisis de abundancia no detectó diferencias significativas encontrando los mayores para los bosques de Várzea, del escudo precámbrico y de tierra firme. En el inventario se registraron 544 especies arbóreas distribuidas en 75 familias, donde Leguminosae la conforman 46 especies de Papilionoidea, 32 Mimosoideas y 17 Caesalpinoideas; le sigue Moraceae con 45 especies y Sapotaceae que está representada por 28 especies. La estructura de éstos bosques es compleja; los árboles emergentes en bosques de tierra firme y del escudo precámbrico, alcanzan los 40 m de altura, en várzea ocasionalmente llegan a los 35 m; para el caso de Igapó y el chaparral los emergentes generalmente no pasan los 25 m de altura".

Cerón y Montalvo (1997), "catalogaron 1 hectárea (100 x 100 m) de bosque de tierra firme para árboles y lianas ≥ de 10 cm de DAP.

Encontraron 206 especies, 125 géneros, 44 familias y 22,04 m2/ha de área basal. La complejidad de esta parcela es superior a las de otros bosques aluviales en Ecuador y levemente menos alto en densidad que los bosques de colina. Según el Índice de Valor de Importancia las especies más dominantes fueron *Iriartea deltoidea* y *Otoba glycycarpa*, y las familias dominantes Myristicaceae y Arecaceae".

Palacios (1997), "ejecutó un inventario en 1 ha de bosque tropical húmedo (Estación Florística El Chuncho, Ecuador) donde muestra los cambios ocurridos desde la primera toma de datos en octubre 1987, encontrando 652 individuos, 243 especies y 29,5 m²/ha de área basal y en la segunda toma de datos en mayo 1993, encontró 627 individuos, 249 especies y 29,51 m²/ha de área basal. Las familias más destacados fueron Moraceae y Myristicacea; a nivel de especie *Otoba glycycarpa, Pourouma guianensis* y *Eschweilera coriácea*. Mostró que, según los cambios ocurridos en cinco años y siete meses, estos bosques cambian prontamente en su composición florística".

Langendoen y Gentry (1991), "declaran que los bosques de Bajo Calima (Colombia) son enormemente ricos en especies de árboles ≥ 10 cm DAP, con más de 250 especies por hectárea, siendo la especie más común *Oenocarpus bataua*. Esta alta diversidad alfa está sindicada con la baja fertilidad del suelo, alta precipitación (7 000 mm/año) y pequeñas dimensiones en la estructura del bosque (escasos árboles emergentes). En la misma línea, Gentry (1988) indica que en áreas muy próximas a Iquitos (Yanamono), se han encontrado aproximadamente 300 especies de árboles ≥ 10 cm de DAP en una hectárea, lo cual excede la diversidad encontrada en otras partes del mundo".

Colix (1970), "existen diferentes técnicas para la caracterización de las especies forestales en el campo. Uno de ellos radica en la descripción Dendrológica, y otro se basa en la descripción anatómica. Ambos son muy significativos y se recíprocamente. Los signos morfológicos externos (vegetativos y reproductivos) se han usado desde mucho antes categorización taxonómica de las plantas. Por otra parte, se han obtenido identificar en el herbario especímenes que escaseaban de flores y frutos con solo recurrir a sistema dendrológico. Los caracteres botánicos en la región de hondura no incluyen tanto los órganos vegetativos como reproductivos que sirven para registrar visualmente a las especies forestales. Algunos autores dicen que los caracteres reproductivos con flores y frutos son más confiables para fines de identificación. Alegan los mismo que los caracteres vegetativos brindan mucha variación como para confiar en ellos completamente. En el campo se muestran ciertos físicos negativos que hacen que los investigadores soliciten ciertas partes vegetativas para hacer su identificación y clasificación. Entre estos factores se pueden citar los siguientes:

Problema para obtener hojas, flores y frutos debido a la gran altura de los árboles.

Dificultad para estimar si una hoja, flor o fruto corresponde a un árbol debido a que ni las hojas, ni las flores, ni los frutos son perceptibles a simple vista.

Alteración en el tiempo de floración y fructificación. Debido a estos factores adversos es que algunos autores como Wyatt – Smith (1954) y de Rosayro (1953), han acudido al estudio de otros caracteres externos como la corteza, tronco y a la presencia o ausencia de gambas y aletones para hacer sus tipificaciones".

Jiménez (1967), "continuando las premisas de Rosayro (1953), empleo los tipos del tronco y de la corteza para identificar árboles de

la flora costarricense y creó una terminología apropiada para tales características.

Budowsky (1954), acudió a flores y al uso de caracteres vegetativos simples como las hojas para representar 144 especies forestales centroamericanas e incluyo claves de identificación fundadas en representaciones vegetativas para separar las especies".

2.2. Antecedentes a nivel nacional

Ríos (2006), "ejecutó un inventario en 2 ha. (Estación Biológica Quebrada Blanco (EBQB), Loreto Perú), da a conocer la composición florística de la EBQB donde defiende los patrones de los bosques amazónicos. Así tenemos a Fabaceae, Lecythidaceae, Chrysoblanaceae y Euphorbiaceae como las familias más importantes, siendo la excepción Elaeocarpaceae. Las especies más cuantiosas son Eschweilera coriacea y Oenocarpus bataua. Además, están presentes un grupo de especies que seguramente optan por suelos arenosos. La familia más heterogénea fue Fabaceae y a nivel de género Sloaneae. Además, la diversidad de especies en la EBQB es menor a los conseguidos en la región y en algunos países amazónicos posiblemente asociado al pasado geológico del área de estudio, la baja densidad de individuos y la dominancia de ciertas especies. En base a los análisis estructurales, este bosque muestra proporciones altas de individuos en las clases más bajas, como los 10 – 15 m de altura y los 10 – 15 cm de DAP; asimismo la presencia de algunos individuos de gran dimensión sugieren que es un bosque primario sin grandes disturbios en un pasado reciente. Según el alto índice de similaridad obtenido (0,59), es posible que algunas de las especies obtenidas durante el muestreo se localicen en el resto de las parcelas que conforman el bosque de tierra firme de la estación".

Vásquez y Phillips (2000), "exponen los resultados de un inventario a largo plazo en la Reserva Allpahuayo - Mishana, Loreto, donde establecieron 2 parcelas de una hectárea; usando un muestreo establecido donde incluyeron árboles, palmas y lianas. Después de 5 años fueron re-censadas para medir el proceso de la dinámica del bosque. Los efectos obtenidos muestran que estos bosques están entre los más diversos, con 281 a 311 especies por hectárea, siendo la familia Fabaceae la más dominante ecológicamente y en número de especies".

Gentry et al. (1998), hicieron un análisis de la diversidad y patrones de composición florística manifestando que mientras algunos de los bosques más ricos en especies en el mundo están en el Perú, no todos los bosques de la Amazonía peruana son excepcionalmente diversos. Analizaron parcelas de 1 ha de plantas superiores a 10 cm de DAP en la Amazonía entre las cuales estudia las parcelas instaladas en Tambopata en el año 1983 en donde encontró alrededor de 600 individuos de árboles con un promedio de 156 especies/ha, es decir una riqueza y diversidad de árboles moderada, lo cual es impresionante, pero significativamente menos que en las muestras de la región de Iquitos, pero relatan que el número total de especies en Tambopata es alta debido a los muchos hábitats característicos.

Vásquez (1997), "efectuando estudios sobre la flórula en 3 reservas de Iquitos (Allpahuayo-Mishana, Yanamono y Sucusari), indica que los bosques de tierra firme son diversos en especies que los bosques de planicie inundable, donde el 74,6% de las especies reconocidas ocurren sólo en tierra firme, el 16,2% se desarrollan en planicie inundable y 9,2 % de las especies crecen tanto en tierra firme como en planicie. La zona de Iquitos está dispuesta por 164 familias; entre las más abundantes Annonaceae, Fabaceae, Rubiaceae, Moraceae, Lauraceae y Euphorbiaceae, 902 géneros y 2

740 especies; de los cuales 143 familias, 858 géneros y 2 611 especies son angiospermas, y 114 familias, 686 géneros y 2 168 especies son dicotiledóneas".

Spichiger et al. (1996), "experimentaron 9 hectáreas de bosque de la Amazonía peruana (Jenaro Herrera, Perú), orientaron su estudio en una parcela de 1 ha con árboles ≥ 10 cm de DAP. En dicha hectárea 227 especies, 504 individuos; un hallaron radio individuos/especie, reconocieron 55% de especies con un solo individuo. El área basal calculada en la hectárea fue 23,6 m2. El índice de valor de importancia calculado marca como familias dominantes: Fabaceae, Sapotaceae, Moraceae, Myristicaceae, Lauraceae, Chrysobalanaceae y Lecythidaceae; a nivel de especies: Oenocarpus bataua, Eschweilera coriacea. Osteophloeum platyspermun y Qualea paraensis".

Gentry y Ortiz (1995). "A partir del punto de vista florístico el carácter más notable de los bosques de la Amazonía peruana es su alta riqueza de especies. Esta original diversidad se da a escala local y regional. Al nivel general el noroeste de la Amazonía tiene más especies de plantas leñosas que cualquier otra región del neo trópico (Gentry 1982^a). A escala local, muestra en parcelas de 1 ha, de plantas mayores a 10 cm de DAP, que es un sistema de muestreo largamente usado, las parcelas más diversas en el mundo entero son las del área de Iguitos, al norte de la Amazonía peruana. Hoy el récord mundial de la diversidad local (o diversidad alfa) considerablemente citado, es el de la reserva mantenida por el campamento turístico de (Explorama Tourist Camp) en Yanamono, Perú, con 300 especies mayores de 10 DAP y 606 plantas en una parcela de 1 ha (Gentry 1988^a). La segunda parcela de 1 ha, más rica en especies del mundo es simplemente otra muestra del área de Iquitos, de Mishana en el río Nanay con 289 especies (Gentry

1988^a). Esto nos insinúa, que la alta diversidad es propiedad – exclusivamente de los bosques de la Amazonía del Perú".

Brako y Zarucchi (1993), "numera la alta diversidad de especies arbóreas, con más de 3 000 especies arbóreas en la Amazonia, se muestra el problema que se tiene para la adecuada identificación de cada especie; además, por la insuficiente posibilidad de obtener material fértil, es decir, hojas y flores y/o frutos, durante la colecta en el bosque".

Dance y Ojeda (1979), "Señala el mayor número de especies mostradas en los inventarios y estadísticas, pertenecen a las leguminosas con 59 especies. En el Centro de Investigaciones Jenaro Herrera (CIJH) del IIAP, desde 1974 ha guardado un arboreto de terraza alta de 9 ha de extensión con más de 7 000 árboles en exploración. Las identidades de estas especies se crearon en dos artículos denominados "Contribución a la flora de la Amazonía peruana; los árboles del arboretum Jenaro Herrera" Vol. 1 y 2 (Spichiger, et al. 1989, 1990), en estas dos circulaciones se presentan 386 especies propios a 180 géneros y 55 familias. También, desde 1985 en el área de influencia del CIJH se ha situado un arboretum de terraza baja de 2,6 ha con cerca de 900 árboles en observación con el objetivo de profundizar los estudios taxonómicos de especies forestales a este tipo de hábitats".

2.3. Antecedentes a nivel regional

Báez (2014). "El artículo se ejecutó en un bosque de terraza alta de la concesión de conservación Gallocunca, en el Sector Baltimore, distrito Tambopata, región de Madre de Dios, Perú, en una área de 527,5 ha. Geográficamente entre los 12º 49´ 35,8´´ y 12º 46´ 53,2´´ de latitud Sur y entre los 69º 25´ 26´´ y 69º 24´ 19,4´´ de longitud Oeste, dentro de la franja de amortiguamiento de la Reserva Nacional de Tambopata. El objetivo fue establecer la diversidad, composición y caracterización Dendrológica de las especies arbórea en base al Índice de Valor Importancia (IVI). Se reconocieron 314

taxones que se agrupan en 60 familias, siendo más significativas las Fabaceae (41 especies), Moraceae y Lauraceae comparten (26 especies). Registrándose las especies de mayor importancia ecológica como: Euterpe Precatoria Mat (IVI =10,66), Iriartea deltoidea Ruiz & Pav (IVI = 6,07) y Eschweilera coriácea (DC.) Mori (IVI =6,02) y una diversidad Fisher de 90,67, que mostraría que consta alta diversidad".

Como consecuencia de la exploración se determinaron dendrologicamente las 20 especies arbóreas en base al IVI. Igualmente, la investigación alcanzada de cada especie, valdrá para conseguir una tarjeta reveladora y representativa, que a través de fotografías acceda una fácil caracterización de las especies en el campo.

Báez y Oblitas (2017). Realiza un estudio sobre la Variedad y Estructura Florística arbórea de un predio agrícola de la comunidad Unión Chonta distrito Tambopata, región Madre De Dios. En este estudio se registró 38 familias distribuidas en 133 especies y 91 géneros.

Del análisis de la composición florística para familias en el área de investigación. Fabaceae es la más representativa y abundante (15,0 %, con 20 especies, 11 géneros y 60 individuos; continuando con Moraceae (12,8 % con 17 especies, 8 géneros y 52 individuos; y otros en mínima igualdad.

De acuerdo al análisis de la composición florística para especies, en 1ha. Distribuidas en 10 transectos; las 10 especies más cuantiosas reportados de área de estudio a: *Iriartea deltoidea* con (5,20 % con 21 individuos), seguido de *Bixa excelsa* (4,22% con 17 individuos); y otras en menor proporción. Y las 10 especies con > frecuencia reportados del área de estudio donde sobresale *Tachigali vasquezii* con 2,65%; seguido de *Iriartea deltoidea* con 2,32%; y otras en menor proporción. Mientras que las especies con mayor dominancia se tiene a: *Bertholletia excelsa* con 7,82 % con un área basal de 2,46

m2; seguido de *Tachigali vasquezii* con 6,55%; A.B de 2,06 m2; mientras que la especie de menor dominancia se tiene a *Euterpe precatoria* con 0,70 %, y con A.B de 0,22, respectivamente.

De acuerdo al análisis de composición florística para las 10 especies mayor peso ecológico (IVI) teniendo a: *Tachigali vasquezii* (12,92 %), seguido de *Iriartea deltoidea* con (10,37 %), *Pourouma minor* (9,32 %), Bertholletia excelsa (8,98%); entre otras como *Bixa excelsa* (8,05 %) y la especie con menor IVI Euterpe precatoria (5,50 %), respectivamente.

De acuerdo al índice de Shannon-Wienner, el transecto S.P-5 contiene más diversidad (3,38) con 33 especies, igualmente presenta un alto índice de dominancia de Simpson: D=0,96.

Por otro lado la menor diversidad se registra en el transecto S.P-9, con un valor de diversidad H= 3,06 con 24 especies y de dominancia D=0,95. y Fisher_alpha arroja valores altos (83,46) de las sub parcelas 3 y 7. Significa que existe una alta diversidad de especies y se caracterizan por ser bosques de terraza alta.

Se observa el dendrograma obtenido a partir de los registros de las especies de los 10 sub parcelas. Mediante el índice de Morisita se observa que las subparcelas S.P-8, S.P-10 y S.P-9 muestran semejanza se 56% de especies como *Bixa excelsa*. Las subparcelas S.P-1, S.P-3 y S.P-2 crean un sub grupo de las especies habituales que presentan a *Iriartea deltoidea* con 60% de similitud y subparcelas S.P-6, S.P-7 y S.P-5 tienen una analogía de 48% de similitud las especies *Naucleopsis naga* y *Iriartea deltoidea*, mientras la S.P-4 solo consta una similitud de 18% con relación a las primeras.

Dueñas *et al.* (2012), "refiere y compara la complejidad, composición florística, abundancia, índices de valor de importancia para familias y especies, se comprobó la biomasa y el stock de carbono acumulado en dos tipos de bosques tropicales, se ejecutó el análisis de similitud

en cada una de las parcelas, y se fijó la correlación de los nutrientes vs, diversidad y composición florística, la reciprocidad de nutrientes vs el stock de carbono acumulado en la biomasa y se realizó el análisis de componentes principales en dos parcelas cada uno de 100 m x 100 m (1ha) de bosques amazónicos, ubicados en el distrito de las Piedras, Provincia de Tambopata, departamento de Madre de Dios".

Swamy (2008), "cuantifico 369 individuos y 130 especies en 1ha. con el argumento de Estudio integrado de los procesos de regeneración de árboles en un bosque amazónico en Tambopata Research Center (TRC)".

Vela et al. (2007), "evaluó la composición florística en cuatro parcelas de 1 hectárea en bosques del llano inundable contiguos a los ríos Los amigos y Madre de Dios. Se reconocieron un total de 345 especies (≥ 10 cm de DAP) en las cuatro parcelas.

Un total de 345 especies, 186 géneros y 58 familias se hallaron en las cuatro parcelas, la parcela con el mayor número de especies fue la parcela Jacaratia con 169 especies, seguido de la parcela Bajio_CM3 con 150 especies, la parcela Cocha Lobo con 130 especies y la parcela Bambú_CM3 con 126 especies. Las parcelas de estudio registran altos índices de diversidad, llegando a registrarse hasta 169 especies en la parcela Jacaratia, aunque no destacan las 200 especies por hectárea registrado por Gentry y Terborgh (1992) en Cocha Cashu en Manu".

Pitman et al. (2003), "En la Cuenca del Rio Alto Purús, identificaron los árboles en seis parcelas de 1 ha cada una, esparcidas a través de la cuenca del río Alto Purús, en bosques a lo largo de los ríos Alto Purús, Curanja y Acre). Cinco de las parcelas fueron instituidas en un bosque de tierra firme y otra en un bosque de tierras inundables. Por lo menos una parcela fue instalada en cada una de las tres

formaciones geológicas importantes del área. En cada parcela se midió el diámetro e identifico todos los árboles mayores o iguales a 10 cm de diámetro a la altura del pecho. Los árboles que no se lograron identificar en el campo fueron recolectados y luego estas muestras fueron especificadas al nivel de especie o morfo especie en el Herbario San Marcos (USM) en Lima. Para poder calcular la similitud de las comunidades arbóreas del Alto Purús y Madre de Dios, confrontamos estos datos con los datos de las parcelas instituidas por J. Terborgh y P. Núñez en Madre de Dios (Terborgh et al. 1996, Terborgh y Andresen 1998, Pitman et al. 2001). Las seis parcelas evaluadas alojan un total de 3 480 árboles. Más del 99% de éstas han sido clasificadas en 59 familias, 196 géneros y 434 especies y morfo especies. Las parcelas de tierra firme obtuvieron un promedio de 574 árboles ≥10 cm diámetro a la altura del pecho (en un rango de 510-678) y un promedio de 142 especies (en un rango de 114-158). La parcela situada en tierras inundables tuvo menos especies (102) que cualquier otra parcela. La variedad específica de árboles en los bosques de tierra firme en la zona del Alto Purús es en cociente ~15% menor que en los bosques de Madre de Dios, delimitadas geográficamente más cerca de la cuenca del río Alto Purús -aquellas en los ríos de Las Piedras, Tahuamanu, y Pariamanu- poseen los niveles más parejos de diversidad arbórea. La diversidad de árboles a escala regional en el Alto Purús también considera ser ~10-15% menor que la encontrada en Madre de Dios"

Pitman et al. (2001), "Demostró una lista de las 150 especies de árboles más frecuentes en una red de parcelas formadas en los bosques inundados de Madre de Dios, Perú. A pesar de que las parcelas solo incluyen tres de las nueve principales cuencas hidrográficas del departamento, se apunta que esta lista caracterice bien los árboles dominantes de los bosques inundados de la región. Casi la mitad de las 150 especies más significativas de los bosques inundados también figuran en la lista de las 150 especies más importantes de los bosques de tierra firme de Madre de Dios, lo cual incita la pregunta de por qué este pequeño grupo de especies juega

un papel tan dominante en los dos principales hábitats del departamento".

Seguidamente se figuran estudios de los primordiales trabajos de averiguación, ligados al tema de investigación:

Reserva Nacional Tambopata (2012), "Diagnóstico del Proceso de Elaboración del Plan Maestro 2011-2016. En el Plan Maestro (2004-2008) de la RNTAMB, se obtuvieron 1 255 especies de flora. En el presente proceso esta información ha sido renovada, principalmente en base a la sugerencia de publicaciones en nacionales e internacionales publicaciones de exploraciones efectuadas al interior de la RNTAMB; la base de datos del New York Botanical Garden, así como la información y el número de flora. Actualmente la RNTAMB, reporta 1 713 especies, referentes a 654 géneros de 145 familias. Las angiospermas registran 1 637 especies agrupadas en 127 familias y 622 géneros, siendo las familias más diversas Fabaceae (158 especies), Rubiaceae (104 especies) y Moraceae (66 especies). Los pteridofitos registran 76 especies de 32 géneros y 18 familias, siendo las familias más diversas: Polypodiaceae (16 especies), Pteridaceae (11 especies) Thelypteridaceae (9 especies)".

Cachay y Ríos (2010), "IVI y caracterización Dendrológica de las especies forestales en la Cordillera Escalera Tarapoto; se evidenció la caracterización Dendrológica de las especies forestales en el sector Cordillera Escalera Tarapoto. La meta fue evidenciar la composición florística según el índice de valor de importancia resumido y caracterizar dendrológicamente las especies forestales exploradas. Se caracterizaron nueve especies las cuales fueron situadas, colectadas, identificadas y caracterizadas; siendo estas: *P. trifoliatum* (Engl.). C.Mart, *P. discolor* (Kunth) Pruski, *M. bidentata* (A. DC) Chevalier, *G.*

melosma Diels in Notizbl., *V. caducifolia* W. Rodrígues, *B. alicastrum* Swartz, *D. quitarensis* Bentham, y *V. trifolia* L.".

Del Águila y Guerra (2010), "Descripción Dendrológica de especies forestales de importancia medicinal en la provincia de Leoncio Prado - Tingo María; se probó 18 especies forestales y realizó la recolección de muestras dendrológicas de especies con importe medicinal. Se identificaron 18 especies forestales con propiedades medicinales, agrupados en 14 familias botánicas, los cuales fueron Pashaco negro (A. polyphylla D.C); Copaiba (C. paupera (Herzog) Dwyeer); Barbasco caspi (S. peruvianus Standl); Insira (M. tinctoria (L) Steudel); Mata palo (F. ruiziana Standl); Canela (E. anomala (Ness) Mez): Canelilla (A. gigantifolia O.C Schmid); Falso fapiña (M. suaveolens Poepp & Endl); Carahuasca (G. hyposeracea Diels); Achotillo (B. platycarpa L.); Pichirina (V. cayannense (Jacquin) Pearson); Palo blanco (A. peruviana Standl); Bellusia (B. pentámera Naud Amasisa, gallito (E. ulei Harms); Guayabilla (M. quinqueloba (McVaugh) Mc Vaugh) y Tangarana (T. peruviana Fish. & Meyer ex C.A Meyer), Espintana (G. Chlrantha Diles), Ojé (F. antihelmintica C.Martius)".

Dueñas *et al.* (2007), "Estudio y Caracterización Dendrológica; Concesión Forestal Río Piedras SAC, se documentaron 123 especies maderables en dos parcelas con una superficie de 1,4 ha, de 700 m x 20 m. Las unidades de muestreo son parcelas rectangulares (transectos en banda). Con la finalidad de colectar, caracterizar e identificar las principales especies de árboles forestales de la Concesión Forestal Otorongo B, esta evaluación es de mucha importancia porque permite tener información de primer nivel, que ayudará en el proceso de certificación forestal del bosque".

INADE (2007), Meso zonificación Ecológica Económica del Corredor Interoceánico Sur Tramo Iñapari - Inambari Proyecto especial MDD.

La diversidad florística, solo colectando las especies más representativas de las unidades de vegetación, se pudieron registrar alrededor de 412 especies a lo largo de la carretera interoceánica, lo que hace suponer que realizando inventarios más detallados, la diversidad de especies puede aumentar en forma exponencial. Así mismo, se pudo notar cualitativamente, que debido principalmente a la gran cantidad de hábitats presentes en el ecosistema montañoso, estos bosques presentaron una mayor diversidad biológica por área, tanto en su estructura horizontal como vertical con la presencia de abundantes epífitas y hemiepífitas.

En el área de influencia de la carretera interoceánica, tramo lñapari-Inambari, según la composición florística y la fisiografía, se presentan 12 tipos de cobertura vegetal, los cuales sustentan la alta diversidad florística de la zona.

En este trabajo, se pudo determinar la presencia de 10 especies endémicas para el Perú, lista que podría aumentar según el grado de detalle de los estudios.

2.4. Conceptos básicos aplicados en el presente estudio de parcelas de 1 ha.

2.4.1. Árbol

Vegetal leñoso perenne con uno o muchos tallos, con copa regularmente precisada. Incluye todo tipo de bambúes, palmas y plantas leñosas que rindan los criterios señalados (FAO 1998).

2.4.2. Bosque

Según Serfor define bosque como, Ecosistema en que prevalecen especies de árboles en diferente estado de progreso cuya

cubierta de su copa sobresale el 10% en situaciones áridas o semiáridas o el 25% en ambientes más propicios.

Font Quer (1985). Lo define: (del latín buscus). Sitio poblado de árboles y mata.

Según el Ministerio de Agricultura del Perú toma el concepto de Brack, 2009, que define: "Los bosques son complejos ecosistemas de seres vivos que contienen microorganismos, vegetales y animales que se influencian mutuamente y se someten al ambiente dominante de unos árboles que se extienden en áreas mayores a media hectárea superan (o pueden superar) los dos metros de altura y tienen un cobertura de más del 10% del área que ocupan". Se sabe que casi dos tercios de la extensión peruana están cubiertos de bosques variados del cual el 73,41% corresponde a bosques de selva baja.

Según la FAO (1988) la define como: "Tierra con cubierta de copas (o densidad de masa equivalente) en más del 10 por ciento de la superficie y una extensión superior a 0,5 ha".

2.4.3. Diversidad biológica

La biodiversidad resulta del transcurso progresivo que manifiesta la presencia de diferentes modos de ser para la vida. Mutación y selección establecen las características y la cantidad de diversidad que existen en un lugar y momento dados. Diferencias a nivel genético, diferencias en las repuestas morfológicas, fisiológicas y etológicas de los fenotipos, diferencias en las formas de desarrollo, en la demografía y en las historias de vida. La diversidad biológica incluye toda la escala de organización de los seres vivos.

El beneficio progresivo por la subsistencia de la biodiversidad nos lleva a un esfuerzo por precisar e indagar por qué está y cómo se disipa. En general los términos ecologistas y conservacionistas se describen a la riqueza en especies (diversidad alfa). Pero la variedad vive dentro de lo que nombramos especies.

Imparcialmente la representación de distintos alelos para cada gen (variación) es la fuente fundamental de materia prima para el proceso progresivo. A la par la biodiversidad se declara en la heterogeneidad a nivel dentro de un ecosistema (diversidad beta) y en la heterogeneidad a nivel geográfico (diversidad gamma).

2.4.3.1. Diversidad de especies

Son las variedades de especies que existen en incomparables lugares del mundo, como selvas, prados, desiertos, lagunas y océanos. Tiene la preeminencia de ser la más registrada por una gran número de personas no necesariamente científicas, de manera que los protectores de la preservación de la biodiversidad la usan como causa común.

✓ Especie

Es el conjunto de cuerpos que se igualan en exterior, conducta, carácter, conocimientos y en disposición genética. Las asociaciones que se procrean de manera sexual se catalogan como órganos de similar especie, sólo si latentemente podrían traspasarse y producir linaje fértil. "Cerca de 1,7 millones de especies fueron explícitamente nombradas y erca del 6% de las especies identificadas viven en latitudes boreal o polar, 59% en las zonas templadas y 35% en los trópicos. Sin embargo la comprensión sobre la riqueza de especies es incompleta, principalmente latitudes del trópico. Según algunas en las evaluaciones el número de taxa tropical de la riqueza de especies del globo sería del rango de 30 - 50 millones de especies y la fracción de riqueza de especies que viven en el trópico se incrementa a más del 90% (WRI 1986; Wilson 1988; Erwin 1991", Citado por: Reátegui 1997).

2.4.4. Niveles de diversidad

Al inicio se diferenciaron dos clases de diversidad; alfa o local y gama o regional mutuamente. La inmensa diversidad de los bosques está descrita tanto a la diversidad florística dentro de un tipo de bosque como a la diversidad de tipos de bosque (Almeyda 1999). La diversidad α , es una situación del aumento de especies presentes en un similar hábitat, (Halffter y Escurra 1992).

Según Lütge citado por: (La Torre 2003) se suponen tres niveles de diversidad:

a) Diversidad alfa

Podemos deducir como concepto "es el número de especies en espacios pequeños de hábitat congruentemente uniforme. Es la riqueza de especies que puede ser usado para contrastar el número de especies en otros tipos de ecosistemas".

b) Diversidad beta

Es la diversidad biológica regional producida en un complicado mosaico de hábitat local producido por las anomalías concernidas con la dinámica y desplazamientos locales. Otras especies son halladas con otras en función al cambio de hábitat a lo largo de un declive topográfico o atmosférico.

c) Diversidad gama

Es en general la diversidad regional de especies que deja en efecto el número de hábitats concurrentes, la diversidad de especies en cada lugar y de acuerdo al cambio de especies entre hábitats. Es aplicada a la larga escala geográfica "razón en la cual las especies se hallan suplidas geográficamente en un tipo de hábitat en localidades diferentes". Razón de cambio de especies entre sitios distantes de similar hábitat o en áreas expandidas geográficamente.

2.4.5. Inventario florístico

Los bosques amazónicos son los más grandes y diversos en los trópicos, y mucho del misterio que rodea su ecología, puede

remontarse a los esfuerzos por entenderlos, a través de inventarios locales pequeños (Pitman et al. 2001).

El inventario florístico es un requisito previo, necesario para la investigación en la ecología de la comunidad tropical, Las preguntas que motivaron el inicio de los inventarios eran entender cómo los factores medioambientales pueden controlar la distribución y diversidad de especies (Phillips et al. 2009)

2.4.6. Composición florística

De acuerdo a Font Quer (1895), se trata de una comunidad vegetal, el detalle de las distintas estirpes o especies que las constituyen.

La composición de un bosque se enfoca como la diversidad de especies de un ecosistema lo cual se mide por su riqueza, representatividad y heterogeneidad resultando de procesos que operan a distintas escalas espaciales y temporales, estos procesos actúan como filtros que seleccionan a aquellas especies que poseen las características adecuadas para soportarlos (Díaz et al. 1988)

La composición florística es el conjunto de especies de organismos que componen un bosque. Un atributo importante de casi todos los bosques tropicales es el gran número de especies que contienen. De los 3 a 10 millones de especies de organismos que hay en el mundo, dos tercios son propios de los trópicos, y la mayoría viven en los bosques tropicales amazónicos (Prance 1982). Posiblemente el 80% de las especies de plantas tropicales ya se hallan identificados. El mayor número de especies arbóreas en los bosques primarios neo tropicales ha sido registrado en Ecuador, donde se registró 300 especies por ha (Valencia et al. 2004).

2.4.7. Estructura del bosque

En los bosques cálidos, el tipo y estructura se conciernen

concisamente con las circunstancias climáticas y edáficas de la zona. La temperatura específica del lugar es una función de los ambientes climáticos locales influenciadas por la topografía y las particularidades de la extensión del terreno. Los escenarios edáficos son determinados por las tipologías geológicas preestablecidas, esquemas de derrame y por la tradición de progreso y dinámica de los suelos, como expresiones integradas del desarrollo climático de la zona.

La estructura de un bosque establece las pertenencias de la espacio del dosel y su retorno, a través de los patrones de enrarecimiento y depósito de biomasa, favorece a la protección del suelo.

2.4.7.1. Parámetros estructurales (Lamprecht, 1990)

Abundancia

"Es la cifra de árboles por especie. El valor nos dice cuál es la contribución de una especie con respecto al número total de individuos. Se diferencia entre abundancias absolutas (número de individuos por especie) y relativas (proporción porcentual de cada especie en el número total de árboles)".

Frecuencia

Es la presencia o ausencia de un individuo establecidas subparcelas, La repetición es una particularidad de la posibilidad de localizar uno o más organismos en una elemento muestral específica. Se enuncia como proporción del número de unidades muestrales donde los atributos aparecen en concordancia con el número total de unidades muestrales (Oosting 1951, Lamprecht 1964, Matteucci; Colma 1982).

Las frecuencias proveen una inicial idea allegada de la similitud de un bosque.

Para Mueller-Dombois e Ellebenberg (1974) "la frecuencia relativa es la proporción enunciada en porcentaje, entre la frecuencia absoluta de cada especie y la frecuencia absoluta total (suma de las frecuencias absolutas de todas las especies) por unidad de superficie".

Dominancia

"Es el grado de cobertura de las especies como palabra de la zona ocupado por ellas. Se precisa como la suma de las influencias horizontales de los árboles sobre la tierra. En los bosques tropicales por razones prácticas se emplean las áreas basales. La dominancia absoluta de una especie es puntualizada la suma de las áreas basales individuales, expresadas en m². La dominancia relativa se calcula como la simetría de una especie en el área basal total evaluada (= 100%). La dominancia es el área ocupada por las especies en el ambiente. Y está determinada por la expresión del área basal en función del área muestral". (Melo 2004).

Según Lamprecht (1990), la dominancia es el valor de cubierta de las variedades como término del espacio requerido por las mismas.

Dominancia absoluta (DoAb o DOA): Expresa el área basal de una especie y un área.

Densidad

La densidad representa el grado de participación de las diferentes especies en el ambiente. Para determinar la densidad se relaciona el número de individuos de cada especie con la superficie de muestra (Melo 2004).

La densidad es el número de individuos en una superficie establecida y podemos estimar a partir del conteo del número de individuos de esta área (Greig-Smith 1964,

Matteucci; Colma 1982).

Densidad absoluta (DeAb o DA): Supone el número de individuos (n) de una determinada especie en el área.

Índice de valor de importancia (IVI)

"El resultado del IVI para las especies indicadoras, manifiestan la igualdad o por lo menos la aproximación del rodal, en sus estructuras, en lo referido al sitio y en su dinámica" (Lamprecht 1990).

"El índice de valor de importancia por familia suma la densidad relativa, la dominancia relativa y la diversidad relativa" (Mori et al.) permitiendo representar numéricamente la proporción aproximada de la cobertura de cada especie y de cada grupo de especies en los distintos estratos de vegetación de un grupo, con eso se conoce mejor la importancia sociológica de las distintas especies (Braun-Blanquet 1979).

Indice valor de cobertura (ivc):

IVC = DeRe+DoRe

Donde: IVC = Índice Valor de Cobertura;

DeRe = densidad relativa;

DoRe = dominancia relativa.

A partir de cada parámetro que compone el IVI se puede entender si la especie es abundante o no, si muestra distribución aglomerada o disgrega y también si posee área basal grande, o no, dando una idea sobre densidad, distribución espacial y la dimensión alcanzada por la población de una especie en relación a las demás (Felfili y Venturoli 2000; Melo 2004).

Curtis y McIntosh (1951, citados por Schaaf 2001 y Soares 2011), propusieron un método largamente utilizado, llamado el valor de importancia, que consiste

en la suma de los valores relativos de densidad, frecuencia y dominancia.

Estratificación

Estratificación consiste en verificar la amplitud de variación en altura de los individuos muestreados, la cual es dividida en tres partes para definir los estratos inferior, medio y superior (Vega 1966, Domiciano 2010).

Las clases de altura que determinan los estratos son determinadas a partir de la altura dominante y la media de las diez mayores alturas totales de la muestra. Las fórmulas (Lamprecht 1990, Domiciano 2010), usadas para distinguir los estratos son propuestas por Leibundgut en el año 1958, estos son:

Inferior: h<(hdom/3)

Medio:(hdom/3) h<(2hdom/3)

Superior: h (2hdom/3)

Con eso fueron considerados en el estrato inferior individuos con h< 8m, en el estrato medio con h< 8m < 16m y en el estrato superior individuos con h < 16m.

2.4.8. Hipótesis, variables, indicadores y definiciones operacionales Hipótesis alterna (h_a):

La diversidad específica y composición florística en un bosque de terraza alta permite determinar la estructura del bosque.

2.4.9. Variables, indicadores y definiciones operacionales.

Tabla 1. Variables e Indicadores

N°	Variables	Indicador	Criterios	Definición Operacional		
1	Variable		Cuantificación de	Es el número de especies de		
	Independiente	N° esp.	la riqueza	una determinada región,		
	1: Riqueza de	presentes/ha	específica,	siendo la unidad fundamental		
	especies		usando índice de	para la evaluación de la		

			Margalef.	homogeneidad de un
				ambiente.
2	Variable Independiente 2: Diversidad de especies		Cálculo	
			diversidad α,	Diversidad α: indica la
			índice de	riqueza de especies que
		α-	Shannon y	existe en un hábitat
		diversidad/ha	Fisher_alpha	específico.
	Variable Independiente 3: Composición Florística			Este consiste en la sumatoria
				de los valores relativos de
3		IVI/		densidad, frecuencia y
3		especies,		dominancia e señala la
		géneros y	Cálculo del IVI al	importancia ecológica de las
		familias.	100%	especies en una comunidad.
				Corresponde al número total
	Variable			de individuos en cada
4	dependiente 1:	N° indiv./ha	Cuantificación N°	parcela, en la que se
•	Número de		Indiv./ha	diferencian los números de
	individuos			individuos por familias,
				géneros, especies.
				Corresponde al número total
		N° familias,	Cuantificación	de familias, géneros y
		géneros y	las más	especies en cada parcela y
		especies/ha	abundantes.	en el total el área.

CAPÍTULO III: MATERIALES Y MÉTODOS

3.1. MATERIALES, EQUIPOS Y HERRAMIENTAS

3.1.1. Materiales:

Materiales, equipos e instrumentos de campo

- ✓ Tijera telescópica.
- ✓ Tijera podadora de mano con funda.
- ✓ Subidores de árboles y arnés
- ✓ Binoculares.
- ✓ Libreta de campo.
- ✓ Lápiz de cera.
- ✓ Marcador permanente que no se diluya en alcohol.
- ✓ Papel periódico.
- ✓ Rafia o pabilo.
- ✓ Alcohol al 96 %.
- ✓ Cinta de embalaje
- ✓ Cinta masking tape
- ✓ Etiquetas para codificación de muestras
- ✓ Lupa 10X 20X.
- ✓ Cuchilla.
- ✓ Machete mediano con funda
- ✓ Regla o vernier.
- ✓ Bolsas pláticas gruesas (80 cm x 60 cm).
- ✓ GPS Garmin 60 CSX Map.
- ✓ Cámara digital Sony DS 700.
- ✓ Brújula SUUNTO.
- ✓ Clinómetro SUUNTO.
- ✓ Cinta diamétrica de 10 metros.
- ✓ Wincha de 50 y 100 metros.

Material de gabinete.

- ✓ Laptop HP.
- ✓ Guías del herbario "Alwyn Gentry".
- ✓ Manual de clave para identificación.
- ✓ Horno secadora de muestras botánicas.
- ✓ Muestras secas del herbario "Alwyn Gentry".
- ✓ Papel Bond A4.
- ✓ Muestras padrón de identificación de especímenes.
- ✓ Literatura especializada para la identificación de especímenes.

Herramientas: Tijera de mano podadora, tijera telescópica, subidores de árboles, machete, lima triangular, cuter, brocha.

3.2. METODOLOGÍA.

3.2.1. Ubicación del área de estudio

ΕI área de investigación sitúa а 30 minutos se aproximadamente de la ciudad de Puerto Maldonado, en el sector Loboyoc, del Distrito de las Piedras, Departamento Madre de Dios carretera a Iberia Km. 16,5 margen derecho, denominado Rodal Semillero Fundo el Bosque, ostenta una distensión de 424 ha. Este Fundo fue cedido en cesión de uso por el INRENA a la UNAMAD en el año 2003, está caracterizado por tener una topografía suave. (Ver tabla 1, figura. 1, 2, 3 y 4).

Tabla 2. Ubicación de las parcelas de estudio en un bosque de terraza alta, en el sector de Loboyoc, distrito las Piedras, provincia de Tambopata.

Ubicación de las parcelas en bosque de Terraza alta									
Bloques	Parcelas	Coordenadas		Tipo d	e Localidad	Provincia			
Bioques		Norte	Este	Bosque	Localidad	Tiovincia			
	Parcela	8621920	486000	Terraza Alta	Loboyoc	Tambopata			
XV	1	8621900	486500	Terraza Alta	Loboyoc	Tambopata			
X V	Parcela	8621600	486000	Terraza Alta	Loboyoc	Tambopata			
	2	8621580	486500	Terraza Alta	Loboyoc	Tambopata			
	Parcela	8621420	485500	Terraza Alta	Loboyoc	Tambopata			
XVI	3	8621400	486000	Terraza Alta	Loboyoc	Tambopata			
XVI	Parcela	8621100	485500	Terraza Alta	Loboyoc	Tambopata			
	4	8621080	486000	Terraza Alta	Loboyoc	Tambopata			
	Parcela	8621420	486000	Terraza Alta	Loboyoc	Tambopata			
XVII	5	8621400	486500	Terraza Alta	Loboyoc	Tambopata			
XVII	Parcela	8621100	486000	Terraza Alta	Loboyoc	Tambopata			
	6	8621080	486500	Terraza Alta	Loboyoc	Tambopata			
	Parcela	8621420	487000	Terraza Alta	Loboyoc	Tambopata			
XIX	7	8621400	487500	Terraza Alta	Loboyoc	Tambopata			
XIX	Parcela	8621100	487000	Terraza Alta	Loboyoc	Tambopata			
	8	8621080	487500	Terraza Alta	Loboyoc	Tambopata			
	Parcela	8620920	485000	Terraza Alta	Loboyoc	Tambopata			
XXVI	9	8620900	485500	Terraza Alta	Loboyoc	Tambopata			
/// VI	Parcela	8620600	485000	Terraza Alta	Loboyoc	Tambopata			
	10	8620580	485500	Terraza Alta	Loboyoc	Tambopata			



Figura 1. Ubicación del área de estudio, bosque de terraza alta, localidad Loboyoc, distrito las Piedras, provincia Tambopata; departamento de Madre de Dios.

Figura 2. Ubicación de las parcelas de estudio, bosque de terraza alta, sector Loboyoc, Distrito las Piedras, Provincia Tambopata; departamento de Madre de Dios.

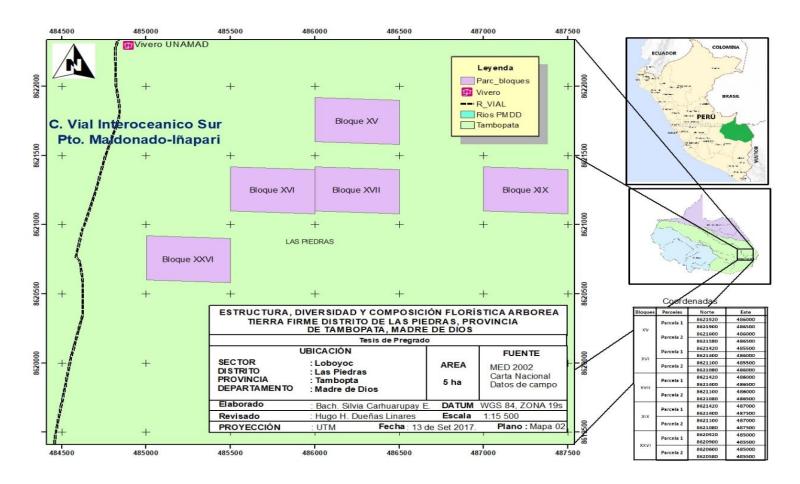


Figura 3. Ubicación de las parcelas de estudio, bosque de terraza alta, sector Loboyoc, Distrito las Piedras, Provincia de Tambopata, Departamento de Madre de Dios.

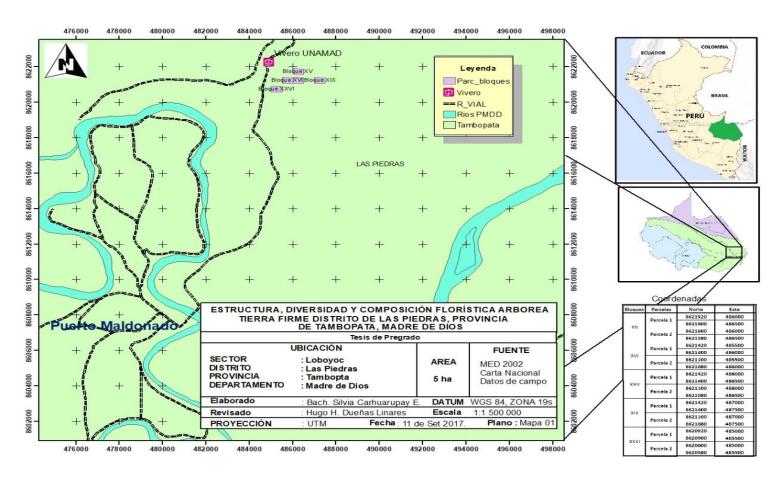


Figura 4. Ubicación de las parcelas de estudio, bosque de terraza alta, sector Loboyoc, distrito las Piedras, provincia Tambopata; departamento de Madre de Dios.

3.2.2. Ccaracterísticas ecológicas del área

La superficie del Fundo "El Bosque"-UNAMAD, de acuerdo a la clasificación climática Hodridge - Tosí (1978). Es una línea de vida en transformación llamada Bosque húmedo subtropical. El bosque presenta una composición florística característico de un bosque heterogéneo a pesar que se realizó extracción de madera es posible encontrar especies valiosas como el tornillo (Cedrelinga catenaeformis), cedro (Cedrela odorata), mashonaste (Clarisia racemosa), misa (Couratari guianensis), quillabordón (Aspidosperma parvifolium), (Aspidosperma pumaquiro macrocarpón), shihuahuaco (Dypterix sp.), ana caspi (Apuleia leiocarpa), ishpingo (Amburana cearensis), entre otros. Existen pequeñas porciones de paca dispersos dentro del área. El clima de la región se caracteriza por presentar anual entre 2 800 y 3 000 mm, con una marcada estación seca de mayo a noviembre. Los meses más húmedos esta entre octubre y marzo (2 000 mm/mes) mientras que en la temporada seca se presenta 2 o 3 meses con menos de 1 000 mm de precipitación mensual, siendo el más seco agosto (50 mm mes). La temperatura media anual fluctúa entre 24°C y 25°C. Siendo la peculiaridad la apariencia de masas de vientos fríos procedente del sur entre los meses de junio y agosto.

3.2.3. Análisis estadístico

3.2.3.1. Población

La población se encuentra representada por el Rodal Semillero Fundo el Bosque, la cual muestra una distensión de 424 ha, siendo éste el tamaño de la población.

3.2.3.2. Muestra

La muestra está representada por 5 bloques de 500 x

500 m (25 ha), cuya metodología ha sido propuesta por Duellman (1990) y Cogollo y Pipoly (1993) (Ver figura 2).

3.2.3.3. Tamaño y forma de las unidades de muestreo

La dimensión de las unidades de muestreo es de 5 bloques de 500 x 500 m, con 10 subparcelas rectangulares de 20 x 500 m (1 ha).

Dentro de las unidades de muestreo de gran tamaño se encuentran las parcelas **BIOTROP** (Figura 2), cuya metodología ha sido propuesta por Duellman (1990) y Cogollo y Pipoly (1993).

Al interior de cada bloque de 500 x 500 m, se implementan subparcelas y que de acuerdo con los objetivos de la investigación son rectangulares (transectos en bandas) de 20 x 500 m. De acuerdo con Sánchez y Velásquez (1997), para el establecimiento de una parcela **BIOTROP** se tiene el siguiente procedimiento:

En la zona de estudio se demarca una gran parcela cuadrada de 500 x 500 m de lado (25 ha), se selecciona al azar dos parcelas rectangulares o transectos en banda de 20 m x 500 m, cada una de 1 ha respectivamente, para hacer la evaluación de la estructura, diversidad y composición florística del área, esta es representativa de toda la población, ya que se tiene la certeza de que es un bosque homogéneo de terraza alta.

El transecto rectangular de 20 x 500 m, se ubica perpendicular a la alineación base y están orientadas en forma rectilínea y cuya área total es de 1 ha. Los puntos de la parcela fueron correctamente identificados y

definidos, para lo cual se utilizó materiales como jalones y cordel o driza.

3.2.4. Técnica de análisis de datos

Para el estudio se tomó los datos de campo, se revisarán los formularios y libretas de campo. Se diseñará en base a los datos un formato en una hoja de cálculo Excel, utilizando diferentes campos para poder llenar los datos de las libretas de campo o fichas de campo, para su posterior análisis cuantitativo o estadístico.

Para el caso de las fotografías, se revisará el registro fotográfico en la libreta de campo y la información de las fotos serán vaciados, creando una carpeta "Fotos", con subcarpetas para familias, géneros y especies respectivamente. Esto ayuda para la identificación de los especímenes y para la elaboración de guías rápidas de identificación, que pueden ser utilizados por diferentes usuarios. (Dueñas *et al.* 2010).

3.2.4.1. Estadística Empleada

El perímetro medido (CAP) se transformara a DAP, según la ecuación DAP = CAP/ π . Luego, los DAP se transformaran en área basal a través de la ecuación AB = $\pi^*(DAP)^2/4$ (Mueller-Dombois y Ellenberg 1974).

Para la composición florística, el cual constituye uno de los rangos más llamativos de la estructura de un bosque tropical, que se expresa en una simple tabla conteniendo las especies representadas en cada parcela y el número de individuos que representa a cada especie.

Para la evaluación del bosque se calculara el índice de valor de importancia de cada especie (IVI) como la

sumatoria de la densidad (DeR), la frecuencia (FR) y la dominancia (DoR) relativas (Finol 1976), en donde:

Abundancia, hace referencia al número de árboles por especie, se distingue la abundancia absoluta (número de individuos por especie) y la abundancia relativa (proporción de los individuos de cada especie en el total de los individuos del ecosistema).

Abundancia absoluta (Ab_a) = número de individuos por especie (ni)

Abundancia relativa (Ab%) = (ni / N) x 100

Dónde:

ni = Número de individuos de la iésima especie

N = Número de individuos totales en la muestra

Frecuencia, se refiere a la existencia o falta de una determinada especie en una parcela, la frecuencia absoluta se expresa en porcentaje (100% = existencia de la especie en todas las parcelas), la frecuencia relativa de una especie se calcula como su porcentaje en la suma de las frecuencias absolutas de todas las especies.

Frecuencia absoluta (Fra) = Porcentaje de parcelas en las que aparece una especie, 100% = existencia de la especie en todas las parcelas.

Frecuencia relativa (Fr%) = $(F_i/F_t) \times 100$

Dónde:

F_i = Frecuencia absoluta de la iésima especie

F_t = Total de las frecuencias en el muestreo

La dominancia (Lamprecht 1990), también denominada grado de cobertura de las especies, es la expresión del

espacio ocupado por ellas. Se define como la suma de las proyecciones horizontales de los árboles sobre el suelo. La dominancia relativa se calcula como la proporción de una especie en el área total evaluada, expresada en porcentaje. Los valores de frecuencia, abundancia y dominancia, pueden ser calculados no solo para las especies, sino que también, para determinados géneros, familias, formas de vida.

Dominancia absoluta (D_a) = $G_{i;}$ De donde G_i = $(\pi/40000).\Sigma d_i^2$

Dónde:

G_i = Área basal en m2 para la iésima especie

d_i = Diámetro normal en cm de los individuos de la iésima especie

 $\pi = 3.1416$

Dominancia relativa (D%) = $(G_i / G_t) \times 100$

Dónde:

 $G_t = \text{Área basal total en } m^2 \text{ del muestreo}$

G_i = Área basal en m² para la iésima especie

Índice de Valor de Importancia (I.V.I), expuesto por Curtis y Mc Intosh 1951,"se automatiza para cada una de las especies a partir de la suma de la abundancia relativa, la frecuencia relativa y la dominancia relativa. A raíz de éste índice se permite conferir, el peso ecológico de cada especie dentro del ambiente, La elaboración de índices de valor de importancia equivalentes para las especies indicadoras, proponen la igualdad o por lo menos la igualdad del rodal en su estructura, sitio y dinámica".

3.2.4.2. Determinación de la riqueza de especies.

Para los análisis de la medición de la diversidad alfa, se cuantificó el número total de especies presentes en cada área (riqueza específica o riqueza de especies)

3.2.4.3. Para el estudio de la estructura de la comunidad: utilizamos los índices de abundancia proporcional (Índice de Fisher_alpha) y el (Índice de Equidad de Shannon-Wienner), por cada parcela de 1 ha. (Mostacedo y Fredericksen 2000, Moreno 2001).

Ocupa que todas las especies están simbolizadas en las muestras; indica qué tan iguales están representadas las especies (en abundancia) teniendo en cuenta todas las especies muestreadas.

Este índice mide la heterogeneidad de grupo, el valor mayúsculo será indicador de una situación en la cual todas las especies son igualmente abundantes, la homogeneidad exhibida por la comunidad equivale a la proporción Para el cálculo del índice de diversidad de Shannon Wiener, la diversidad máxima y la homogeneidad de la comunidad se han utilizado las fórmulas siguientes:

$$H' = \sum p_i \ln p_i \ y \ \sum p_i = 1$$

Dónde:

pi = abundancia igual de la especie, lo cual involucra conseguir el signo de individuos de la especie i dividido entre el número total de individuos de la muestra.

Toma que las especies completas están constituidas en las muestras y que todos los individuos estuvieron muestreados al azar. Se puede alcanzar valores entre cero (0) cuando hay una sola especie y el logaritmo de S cuando todas las especies están representadas por el

mismo número de individuos. Puede verse fuertemente influenciado por las especies más abundantes.

Alfa de Fisher es un índice de diversidad ampliamente utilizado, específicamente adecuado para la abundancia de especies que conforman una distribución de una serie logarítmica.

Índice de diversidad de Fisher (α de Fisher): que permite estimar la diversidad α de una comunidad; entre mayor sea α , mayor será la diversidad de ésta (Fisher et al. 1943).

Utilizamos el índice de diversidad Alfa Fisher (Fisher et al. 1943); $S=\alpha \ln [1+(N/a)]$, donde S es el número total de especies registradas en la muestra, N es el número de individuos en la muestra y α es el índice de diversidad; este índice es robusto evalúa eficazmente la diversidad en función de la variación del número de individuos y del número de especies y puede ser comparada inclusive en parcelas de diferente área (Condit et al. 1996).

Alfa de Fisher se ha demostrado que es un muy eficiente índice de diversidad para discriminar entre sitio. Esto es una consecuencia de que alfa Fisher es teóricamente independiente del tamaño de la muestra, y por lo tanto, mucho menos influenciada por la abundancia de la especies más comunes (Condit et al. 1998).

3.2.4.4. Diversidad Beta

Para la determinación de la diversidad Beta se utilizará el **Índice de similitud Jaccard (coeficiente de similitud Ij)** que da peso parejo a todas las especies sin afectar su

abundancia y por ende dan importancia inclusive a las especies más raras.

La fórmula usada es la siguiente:

$$I_j = \frac{c}{a+b-c}$$

Dónde:

a= número de especies en el sitio A

b= número de especies en el sitio B

c= número de especies concurrentes en ambos sitios A y

B, es decir que están compartidas.

Este índice va desde cero (0) cuando faltan especies intervenidas, hasta uno (1) cuando los dos sitios conllevan las mismas especies. Este índice calcula desigualdades en la apariencia o deserción de especies.

3.2.5. Análisis multivariado

Para el análisis de todas las parcelas se utilizará la asociación por promedio aritmético de conjuntos de pares no ponderados (UPGMA) se aplicará usando la abundancia relativa de la matriz resultante. Se utilizó el Software especializado PAST-Palaeontological Statistics.

Los resultados se muestran en dendrogramas, los cuales estarán dispuestos, utilizando las especies. Las observaciones serán llevados a nivel de especie, uno conteniendo las especies absolutas, otro descartando las especies que acontecen en sólo un espacio, y otro descartando las especies que sobrevienen en una o dos partes. Los conjuntos descubiertos en cada dendrograma serán seleccionados cortando el dendrograma al 50% de la disimilaridad. Las

familias, géneros y especies más abundantes serán identificados en cada grupo o colectividad florística.

Para el análisis de todas las parcelas también se utilizará el Análisis de Componentes Principales (PCA), para las especies más dominantes y las que tengan el mayor índice de valor de importancia, relacionada con el tipo de bosque o formación vegetal. Este análisis es un régimen manejado para minimizar la dimensionalidad de un conjunto de datos también vale para descubrir los motivos de la variabilidad de los datos y ordenarlos por categoría.

Para el análisis de Componentes Principales (principal component analysis, PCA), se utilizara el Software "Estimates 5" Statistical Estimation of Species Richness and Shared species from samples (Melo y Vargas 2003), que nos permitirá realizar el análisis de todos los componentes para la abundancia relativa de las especies vs. Parcelas.

CAPÍTULO IV: RESULTADOS Y DISCUSIÓN

4.1. De la estructura del bosque

4.1.1. De la estructura vertical del bosque

La figura 5 muestra las seis clases altimétricas de la estructura del bosque; separadas cada 5 m, donde se puede evidenciar que existen 1 347 árboles en la clase altimétrica de 6-11,99, seguida de 1 926 árboles en la clase altimétrica de 12-17,99 respectivamente. En las clases altimétricas de ≤5,99 se encuentran 43 árboles. Mientras que en la clase altimétrica ≥30 se encuentran representados por 105 árboles. Se puede evidenciar que la mayor cantidad de árboles se encuentran concentrados en la clase altimétrica de 12-17,99 con (1 926 árboles del total). Sin embargo la mayoría de los árboles se encuentra concentrados en dos clases de 6-11,99 y 12-17,99 hacia un total de (3 273 árboles para todo el área de estudio), que representan el 73,89% del total de árboles.

Esto evidencia que la estructura vertical de un bosque de terraza alta en la localidad de Loboyoc, está constituido por tres estratos: estrato superior representado por árboles con clases altimétricas de 24-29,99 y ≥ a 30 m (313 árboles), un estrato medio representado por árboles con clases altimétricas de 12-17,99 y 18-23,99 (2 726 árboles); y un estrato inferior representado por árboles con clase altimétricas de 6-11,99 y ≤5,99 (1 390 árboles) respectivamente.

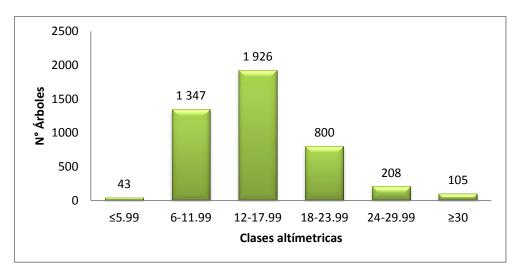


Figura 5. Representa el número de árboles para las diferentes clases altimétricas para toda el área de estudio

La Figura 6, nos muestra también los porcentajes para cada clase altimétrica las seis clases altimétricas de la estructura del bosque; separadas cada 5 m, donde se evidencia que en la clase altimétrica de 12-17,99 está representado por el 43,49% del total, seguida de la clase altimétrica de 6-11,99 con el 30,41%; éstas dos clases altimétricas representan en conjunto el el 73,90% del total de árboles para todo el área de estudio.

La clase altimétrica de 24-29,99 está representada por el 4,70%, seguida de la clase altimétrica \geq 30 cm (estrato superior), y finalmente la clase altimétrica de \leq 5,99 con 0,97% del total de árboles.

Como podemos observar en la Figura 5 y 6, muestran un modelo ya popular para los bosques tropicales, con mayor aumento de árboles en la menor clase altimétricas. Estos resultados se corroboran con las ilustraciones realizados en bosques de tierra firme por Báez (2014); Báez y Oblitas (2017); Báez, Dueñas, et al. (2017); para la provincia de Tambopata.



Figura 6. Representa el porcentaje de las diferentes clases altimétricas para toda el área de estudio.

4.1.2. De la estructura horizontal del bosque

La figura 7 muestra las diferentes clases diamétricas de la estructura horizontal del bosque, donde se puede evidenciar que existen mayor cantidad de árboles (2 067) es en la clase diamétrica de 10-19,99, seguido de 1 242 árboles en la clase diamétrica de 20-29,99 respectivamente. En las clases diamétricas de ≤9,99 se encuentran 6 árboles. Mientras que en la clase diamétrica ≥50 se encuentran representados por 391 árboles. Se muestra también los porcentajes para cada clase diamétrica.

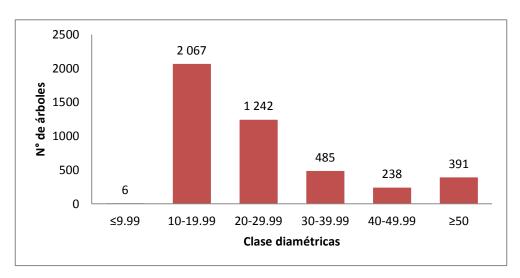


Figura 7. Representa el número de árboles para las diferentes clases diamétricas para toda el área de estudio.

La Figura 8, nos muestra también los porcentajes para cada clase diamétrica; estas están representadas por seis clases diamétricas de la estructura del bosque; separadas cada 10 m, donde se evidencia que en la clase diamétrica de 10-19,99 está representado por el 46,67% del total, seguida de la clase diamétrica de 20-29,99 con el 28,04%; éstas dos clases diamétricas representan en conjunto el 74,71% del total de árboles para todo el área de estudio.

La clase diamétrica de 30-39,99 está representada por el 10,95%, seguida de la clase diamétrica de \geq 50 cm con 8,83%; seguida de la clase 40-49,99 con 5,37%; finalmente la clase \leq 9,99 representa solo el 0,14% del total de árboles.

Como podemos observar en la Figura 7 y 8, muestran un modelo ya popular para los bosques tropicales, con mayor aumento de árboles en las menores clases diamétricas. Estos resultados se corroboran con los estudios de investigación realizados en bosques de tierra firme por Cachay y Ríos (2010); Báez (2014); Báez y Oblitas (2017); Báez, Dueñas, et al. (2017) para la provincia de Tambopata.

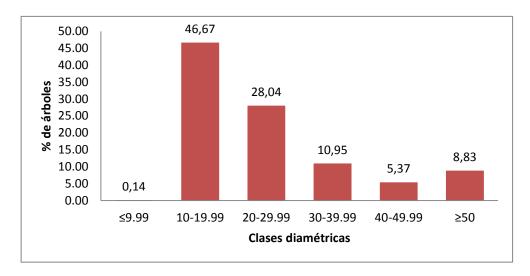


Figura 8. Representa el número de árboles para las diferentes clases diamétricas para toda el área de estudio.

4.1.3. De la riqueza y diversidad de especies

La figura 9 muestra el número de especies y el número de individuos en 10 parcelas de bosque de terraza alta, los rangos para la riqueza de especies fluctúan entre 71 (Parcela 2)-116(Parcela 6), con un promedio de 93,5 especies por parcela.

Las parcelas mejor representadas en riqueza de especies son P6, P5, P10 y P9 respectivamente. Las parcelas menos representadas en riqueza de especies son P2, P1, P7 respectivamente. Estos resultados son bajos en comparación con otros estudios realizados en 1 ha de bosque de terraza alta en la provincia de Tambopata, utilizando la misma metodología de trabajo de campo; tal como refieren Luque y Farfán (2010); Cueva (2014); Pitman et al. (1999, 2001); Gentry (1988); Dueñas et al. (2007, 2010).

La riqueza de especies para este tipo de bosque, es particular; ya que el 100% de las parcelas ha sido sometido a extracción selectiva de las principales especies forestales; y los resultados son más bajos respecto a otros bosques de la Amazonía peruana y los bosques del departamento de Madre de Dios; que se encuentran en mejor estado de conservación. En síntesis este tipo bosque de terraza alta actualmente se encuentra en estado de recuperación; para mantener su estabilidad dinámica.

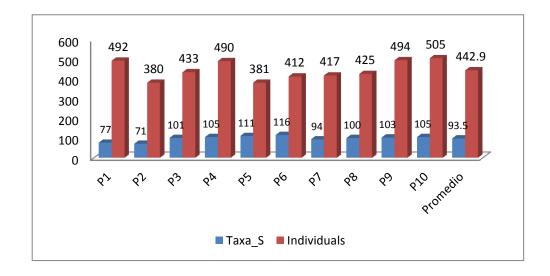


Figura 9. Representa el número de especies y el número de individuos para las 10 parcelas diferentes de 1 ha, en un bosque de terraza alta.

En la figura 10 se muestra los índices de Shannon-Wienner y de α -Fisher para toda el área de estudio. El promedio para Shannon-Wienner es de 4,04 y de α -Fisher es de 39,90, lo que muestra que consta una alta variedad de especies. Los rangos fluctúan entre valores de 3,74-4,22 para Shannon-Wienner. Para α -Fisher los valores fluctúan entre 25,61-53,7 respectivamente.

Los valores para el índice de Shannon_H, están representados por un promedio de 4,04, lo cual significa que para las 10 parcelas de 1 ha, lo valores están estandarizados; esto explica que en este bosque de terraza alta existe una alta diversidad de especies. Estos resultados son relativamente similares en comparación con otros estudios realizados en la provincia de Tambopata, utilizando la misma metodología de trabajo de campo; tal como refieren Dueñas et al. (2007, 2010, 2012); Báez y Oblitas (2017); Báez (2014).

Los valores para el índice de Fisher_alpha, están representados por un promedio de 39,90, lo cual significa que para las 10 parcelas de 1 ha, lo valores están estandarizados; esto explica que en este bosque de terraza alta existe una alta diversidad de especies. Las

parcelas mejor representadas son: P6 (53,7) y la P5 (52,64). Las parcelas que estuvieron menos representadas son: P1 (25,61) y P2 (25,75). Estos resultados son relativamente bajos en comparación con estudios realizados en otras áreas de estudio, que reportan valores más altos para este tipo de bosque de terraza alta en la provincia de Tambopata; tal como lo señalan Monteagudo (2014); Dueñas et al. (2012); Oblitas (2014); Báez (2014). Cuanto más alto llegue a ser el valor del índice de Fisher, mayor será la diversidad de especies. Sin embargo podemos inferir que existe alta diversidad de especies, independientemente del estado de conservación del mismo.

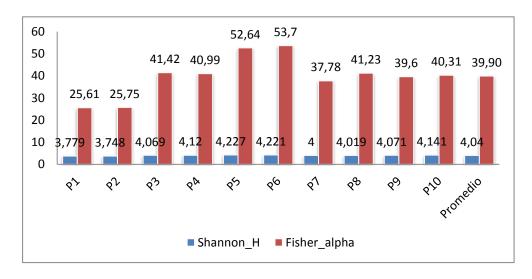


Figura 10. Representa los índices de diversidad de Sahnnon_H y de Fisher_alpha para las 10 parcelas en bosque de terraza alta.

4.1.4. De la composición florística

La figura 11 muestra las 15 familias más abundantes con el mayor número de géneros para 10 parcelas. Siendo las más representativas la familia Fabaceae con 25 géneros, seguida de Moraceae con 11 géneros, y Lauraceae, Malvaceae con 10, Sapotaceae con 7 y Annonaceae, Euphorbiaceae y Meliaceae con 6 géneros respectivamente. Las otras familias estuvieron representadas por 5, 4 y 3 géneros respectivamente. Estos resultados se corroboran con la de otras investigaciones en cuanto a su composición florística de familias, tal como se evidencia en Aucahuasi, et

al. (2010); Luque y Farfán (2010); Cueva (2014); Pitman et al. (1999, 2001, 2003); Gentry (1988); Dueñas et al. (2007, 2010); Báez y Oblitas (2017); Báez y Dueñas et al. (2017).

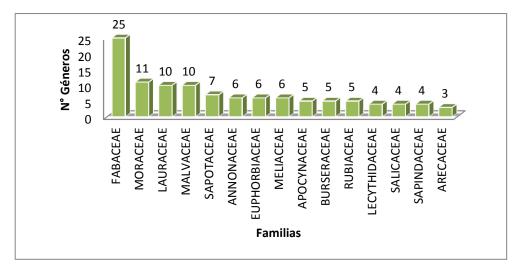


Figura 11. Representa el número de familias vs el número de géneros más abundantes para toda el área de estudio.

La figura 12 representa las 15 familias más cuantiosas con el elevado número de especies. Las familias más representativas son Fabaceae con (38 especies), Moraceae con (24 especies), seguida de Lauraceae (17 especies), Malvaceae (15 especies), Sapotaceae (14 especies), Burseraceae (13 especies), Annonaceae (8 especies). familias: Las otras Euphorbiaceae, Meliaceae, Apocynaceae, Myristicaceae Urticaceae ٧ estuvieron representadas por (7 especies), respectivamente. Las Salicaceae y Myrtaceae (6 especies). Finalmente Rubiaceae solo con (5 especies), de toda el área de investigación.

Las 10 primeras familias resultan siendo las más abundantes en este tipo de bosque de terraza alta; siendo las de más amplia distribución. Estos resultados se corroboran con la de otras investigaciones en cuanto a su composición florística de familias, tal como se evidencia en Ter Steege (2013); Monteagudo (2014); Luque y Farfán (2010); Cueva (2014); Pitman et al. (1999, 2001);

38 40 35 30 25 20 15 0 N° Especies 15 14 13 7 6 FABACEAE MORACEAE LAURACEAE MALVACEAE SAPOTACEAE BURSERACEAE **ANNONACEAE** EUPHORBIACEAE MELIACEAE **APOCYNACEAE** MYRISTICACEAE URTICACEAE SALICACEAE MYRTACEAE RUBIACEAE

Gentry (1988); Dueñas et al. (2007, 2010); Báez, Dueñas et al. (2017); Báez y Oblitas (2017); Pitman (2001, 2003).

Figura 12. Representa el número de familias vs el número de especies más abundantes para toda el área de estudio.

Familias

La figura 13 muestra las 15 familias más abundantes con el mayor número de individuos para 10 parcelas para toda el área de estudio. Las familias más representativas son: Moraceae (620 individuos), seguida de Arecaceae (516), Burseraceae (420), Fabaceae (419), Myristicaceae (296), Lauraceae (292), Urticaceae (202), Siparunaceae (179), Sapotaceae (152), Malvaceae y Annonaceae (101) y (100), respectivamente. Otras familias estuvieron menos representadas en toda el área de estudio.

Estos resultados se corroboran con la de otras investigaciones en cuanto a su composición florística de familias, tal como se evidencia en Ter Steege (2013); Vela (2007); Luque y Farfán (2010); Cueva (2014); Pitman et al. (1999, 2001, 2003); Gentry (1988); Dueñas et al. (2007, 2010); Báez y Dueñas et al. (2017); Báez y Oblitas (2017).

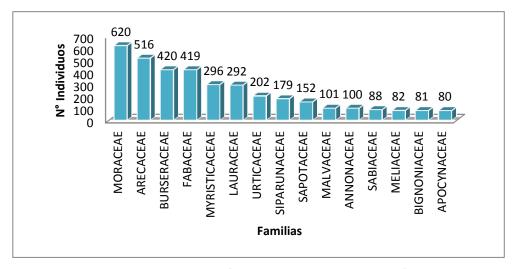


Figura 13. Representa el número de familias vs el número de individuos más abundantes para toda el área de estudio.

La figura 14 muestra los 15 géneros más abundantes con el mayor dígito de especies para 10 parcelas. Los géneros más representativos son: Inga y Protium (7 especies), Brosimum (6 especies), Ocotea, Tachigali y Virola con (5 especies), Guarea, Micropholis, Naucleopsis y Pourouma (4 especies). Otros géneros menores solo estuvieron representados por 3 especies del total.

La mayoría de los géneros son los más representativos en este tipo de bosque de terraza alta para la provincia de Tambopata; tienen una amplia distribución también en otros tipos diferentes de bosques.

Estos resultados se corroboran con la de otras investigaciones en cuanto a su composición florística de familias, tal como se evidencia en Ter Steege (2013); Vela (2007); Luque y Farfán (2010); Cueva (2014); Pitman et al. (2001, 2003); Gentry (1988); Dueñas et al. (2007, 2010); Báez y Oblitas (2017); Báez y Dueñas et al. (2017).

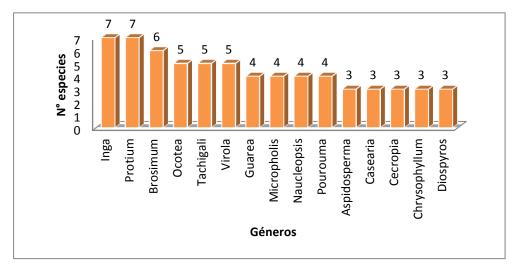


Figura 14. Representa el número de géneros vs el número de especies más abundantes para toda el área de estudio

La figura 15 muestra los 15 géneros más abundantes con el mayor número de individuos para 10 parcelas. Los géneros con el mayor número de individuos estuvieron representados por Pseudolmedia (265 individuos), Tetragastris (259 individuos), Euterpe con (251 individuos), Iriartea (237 individuos), Iryanthera (201 individuos), Brosimum (181 individuos), Siparuna con (179 individuos), Ocotea con (170 individuos), Tachigali con (158 individuos), Protium con (150 individuos), Inga con (139 individuos), Cecropia con (111 individuos), Virola con (95 individuos), Pourouma con (91 individuos), finalmente Meliosma con (88 individuos), del total para la superficie de estudio.

Los primeros cinco géneros, resultan siendo los de más amplia distribución en cada una de las parcelas de terraza alta.

Nuestros resultados se corroboran con la de otros autores en cuanto a su composición florística de géneros, tal como se evidencia en Ter Steege (2013); Vela (2007); Luque y Farfán (2010); Cueva (2014); Pitman et al. (1999, 2001); Gentry (1988); Dueñas et al. (2007, 2010); Báez y Oblitas (2017); Báez y Dueñas et al. (2017).

Figura 15. Representa el número de géneros vs el número de individuos más abundantes para toda el área de estudio.

La figura 16 muestra las 15 especies crecidamente abundantes con el mayor dígito de individuos para 10 parcelas. La especies más abundantes estuvieron representadas por: Tetragastris altissima (254 individuos), Euterpe precatoria con (251 individuos), Iriartea deltoidea con (237 individuos), Siparuna decipiens con (169 individuos), Brosimum (138)individuos), lactescens con Pseudolmedia laevis con (128 individuos), Iryanthera laevis con (102 individuos), Iryanthera juruensis con (100 individuos), Cecropia sciadophylla con (99 individuos), Tachigali vasquezii con (95 individuos), Pseudolmedia laevigata con (91 individuos). Otras especies estuvieron representadas por menos valores.

Los resultados se corroboran con la de otros autores en cuanto a su composición florística de géneros, tal como se evidencia en Ter Steege (2013); Vela (2007); Luque y Farfán (2010); Cueva (2014); Pitman et al. (1999, 2001); Gentry (1988); Dueñas et al. (2007, 2010); Báez y Oblitas (2017); Báez y Dueñas et al. (2017).

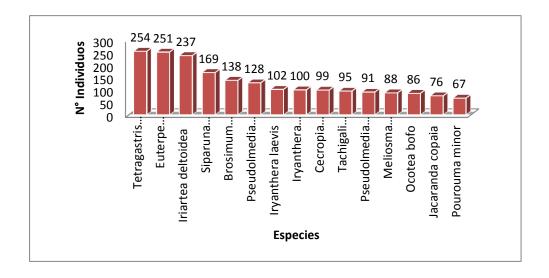


Figura 16. Representa el número de especies vs el número de individuos más abundantes para toda el área de estudio.

4.1.5. Análisis global de la composición florística para toda el área de estudio

La tabla 3 y figura 17 muestran para toda el espacio de investigación en un bosque de tierra firme la composición florística global, estuvo representada por 4 429 árboles ≥ 10 cm de DAP, distribuidos en 254 especies, 165 géneros y 53 familias.

Los resultados comparados con otros estudios para bosque de terraza alta o bosque de tierra firme, en cuanto se refiere a su composición florística son relativamente bajos (Vela 2007; Pitman et al. 1999, 2001, 2013; Gentry 1988; Dueñas et al. 2007, 2010, 2012; Ter Steege 2013; Vela 2007; Pitman et al. 2001, 2003; Gentry 1988; Dueñas et al. 2007, 2010; Báez 2014; Báez y Oblitas 2017; Dueñas et al. 2017).

Sin embargo esta composición florística se comparte con otras áreas de la región, en cuanto se refiere a la presencia de familias, géneros y especies. (Ver anexo 7). Creemos que uno de los factores que contribuyen a que el número y porcentaje de familias, géneros y especies sea relativamente bajo respecto a otras áreas

es porque estos bosques se encuentran en proceso de recuperación o por las características de los suelos.

Tabla 3. Representa los diferentes taxa de árboles con sus valores respectivos.

		Arboles ≥ 10	cm
N°	Taxa	DAP	Total
1	Familias		53
2	Géneros		165
3	Especies		254
4	Individuos		4429

Fuente: Elaboración propia

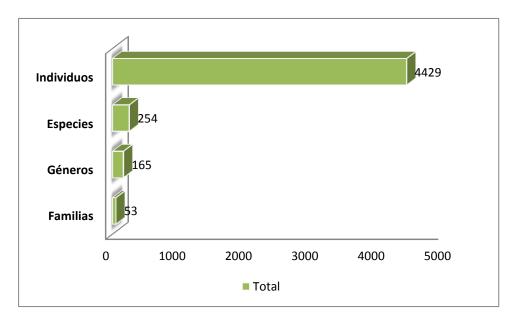


Figura 17. Representa la composición florística y el número total de taxa para toda el área de estudio.

4.1.6. Del índice de valor de importancia de especies (IVI)

La figura 18, nos muestra el cálculo del índice de valor de importancia (IVI) a nivel de especies, se calcula para cada especie a partir de la suma de la abundancia relativa, la frecuencia relativa y la dominancia relativa. Con éste índice es posible comparar, el peso ecológico de cada especie dentro del ecosistema, (Curtis y Mc Intosh 1951).

Para este tipo de bosque de tierra firme (terraza alta), es característico la presencia de las siguientes especies más abundantes; en el primer grupo aparecen: *Tetragastris altissima* (5,73%), *Euterpe precatoria* (5,67%), *Iriartea deltoidea* (5,35%), seguida de un segundo grupo con *Siparuna decipiens* (3,82%), *Brosimum lactescens* (3,12%), *Pseudolmedia laevis* (2,89%), *Iryanthera laevis* (2,30%) e *Iryanthera juruensis* (2,26%), otras especies están menos representadas.

Los resultados de abundancia se corroboran con otros estudios realizados para bosques de terraza alta en la provincia de Tambopata y la Amazonía peruana, tal como lo refieren Ter Steege (2013); Vela (2007); Pitman et al. (2001, 2003); Gentry (1988); Dueñas et al. (2007, 2010, 2012); Báez (2014); Báez y Oblitas (2017); Dueñas et al. (2017).

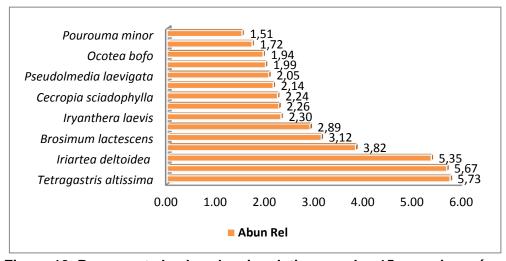


Figura 18. Representa la abundancia relativa para las 15 especies más abundantes para toda el área de estudio

La figura 19 nos muestra el cálculo de la frecuencia relativa de las especies en toda el área de estudio para un bosque de tierra firme. Los valores representan la proporción de partes en las que surge una especie, "100% = existencia de la especie en todas las parcelas" (Curtis y Mc Intosh 1951).

Entre las especies más frecuentes para este tipo de bosque están: Tetragastris altissima, Euterpe precatoria, Iriartea deltoidea, Siparuna decipiens, Pseudolmedia laevis, Cecropia sciadophylla, Jacaranda copaia, Beilschmiedia tovarensis, Virola sebifera, Apeiba membranácea, Pseudolmedia macrophylla, Hymenaea oblongifolia y Aspidosperma parvifolium, con (1,02%), del total representadas en las 10 parcelas de 1 ha.

Los resultados obtenidos son similares a los encontrados por Pitman (2001, 2003); Dueñas et al. (2007, 2012); Báez (2014); Báez y Oblitas (2017); Dueñas et al. (2017); para otras áreas en el ámbito de la provincia de Tambopata.

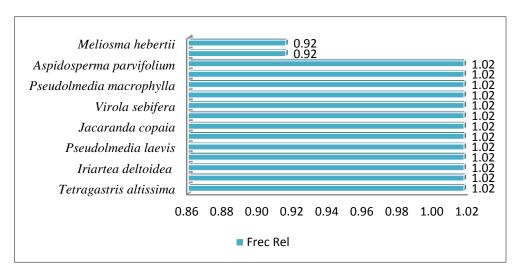


Figura 19. Representa la frecuencia relativa para las 15 especies más frecuentes para toda el área de estudio

En la figura 20 se muestra la dominancia relativa de las especies para todo el sector de investigación en un bosque de terraza alta. La dominancia siempre llamada grado de cobertura de las especies, es la término del espacio ocupado por ellas. Se detalla como la suma de las proyecciones horizontales de los árboles sobre el suelo. "La dominancia relativa se calcula como la proporción de una especie en el área total evaluada, expresada en porcentaje. Los valores de frecuencia, abundancia y dominancia,

pueden ser calculados no solo para las especies, sino que también, para determinados géneros, familias, formas de vida". (Lamprecht 1990).

Los valores de dominancia relativa expresan la sumatoria del área basal de los individuos de una respectiva especie y se expresa en porcentaje de cobertura. Las especies con las mayores áreas basales son: *Tetragastris altissima* (7,64%), *Iriartea deltoidea* (4,06%), *Bertholletia excelsa* (3,80%), *Pseudolmedia laevigata* (3,07%), *Jacaranda copaia* (2,96%), *Tachigali vasquezii* (2,49%), *Cecropia sciadophylla* (2,48), *Hymenaea oblongifolia* (2,39%), *Eschweilera coriácea* (2,32%), *Ocotea bofo* (2,30%), *Euterpe precatoria* (2,27%), *Pouteria torta* (2,04%), otras como *Brosimum lactescens* con (1,93%) y *Clarisia racemosa* con (1,54%) respectivamente. Como se observa en el análisis no siempre las especies más abundantes son las dominantes (Cachay y Ríos 2010; Ter Steege 2013; Vela 20017; Pitman et al. 1999, 2001; Gentry 1988; Dueñas et al. 2007, 2010; Báez 2014; Báez y Oblitas 2017; Dueñas et al. 2017; Pitman 2001, 2003).

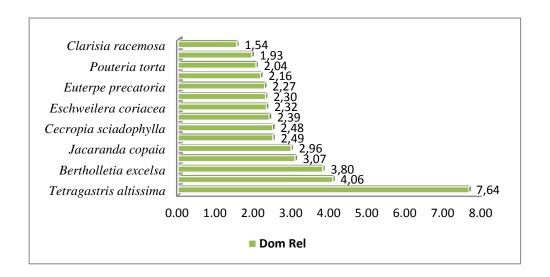


Figura 20. Representa la dominancia relativa para las 15 especies más frecuentes para toda el área de estudio

La figura 21 nos muestra el índice de Valor de Importancia para las 15 especies más importantes para toda el área de la tesis de un bosque de terraza alta. "Se deduce para cada especie a partir de la suma de la abundancia relativa, la frecuencia relativa y la dominancia relativa. Con éste índice es posible confrontar, el peso ecológico de cada especie dentro del ecosistema, la producción de índices de valor de importancia similares para las especies indicadoras, refieren la igualdad o por lo menos la semejanza del rodal en su composición, estructuras, sitio y dinámica". (Curtis y Mc Intosh 1951).

Las especies de mayor peso ecológico o las que presentan un óptimo crecimiento en la comunidad del bosque de terraza alta: Tetragastris altissima (4,80%), Iriartea deltoidea (3,48), Euterpe precatoria (2,98%), Pseudolmedia laevis (2,02%), el segundo grupo está representado por: Brosimum lactescens (1,99%), Siparuna decipiens (1,96%), Pseudolmedia laevigata (1,95%), Cecropia sciadophylla (1,91%), Jacaranda copaia (1,90%) y Tachigali vasquezii (1,82%). El tercer grupo de especies está representado por Ocotea bofo (1,72%), Bertholletia excelsa (1,67%), Iryanthera laevis (1,49%), Eschweilera coriácea (1,45%) e Hymenaea oblongifolia con (1,35%) del total.

De los resultados se puede evidenciar, que en este bosque de terraza alta la mayoría de las 15 especies reportadas son abundantes, frecuentes, dominantes y también comparten el IVI, para todas las 10 parcelas de 1 ha. Lo que generalmente no ocurre; ya que muchas especies pueden ser abundantes y frecuentes; pero no necesariamente dominantes o viceversa. Nuestros resultados en IVI para especies son los mismos registrados en otros estudios por Pitman (2010, 2013); Dueñas et al. (2007, 2010); Báez (2014); Báez y Oblitas (2017); Dueñas et al. (2017); Cachay y Ríos (2010).

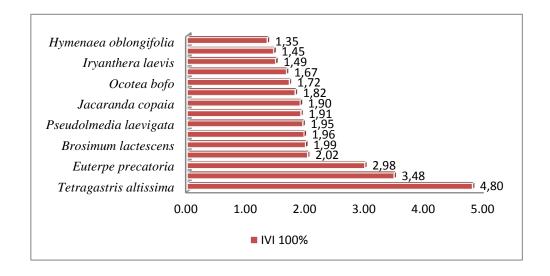


Figura 21.Representa el IVI de las 15 especies con el más óptimo crecimiento en el bosque.

4.1.7. De la similitud de las parcelas (índice de similaridad de jaccard)

La diversidad beta o diversidad entre hábitats es el grado de reemplazamiento de especies o cambio biótico a través de gradientes ambientales (Whittaker 1972). A diferencia de las diversidades alfa y gamma que pueden ser medidas fácilmente en función del número de especies, la medición de la diversidad beta es de una dimensión diferente porque está basada en proporciones o diferencias (Magurran 1988). Estas proporciones pueden evaluarse con base en índices o coeficientes de similitud, de disimilitud o de distancia entre las muestras a partir de datos cualitativos (presencia/ausencia de especies) o cuantitativos (abundancia proporcional de cada especie medida como número de individuos, biomasa, densidad, cobertura, etc.), o bien con índices de diversidad beta propiamente dichos (Magurran 1988; Wilson y Shmida 1984).

Para la determinación de la variedad Beta se usó el **Índice de similitud Jaccard (coeficiente de similitud)** que da igual peso a todas las especies sin concernir su abundancia y por ende dan importancia inclusive a las especies más raras.

El intervalo de valores para este índice va de 0 cuando no hay especies intervenidas entre ambos sitios, hasta 1 cuando los dos sitios tienen la misma constitución de especies.

En la tabla 4 y figura 22, se muestra la similaridad y el índice de distancia de Jaccard, a través de Grupos Pareados, con un coeficiente de Correlación de 0,8624. Los efectos señalan la similitud o disimilitud entre las respectivas parcelas a través del índice de distancia; las parcelas que tienen mayor similitud son: P5 con la P6 con un 49% de similitud, seguida de las parcelas: P3 con la P4 con 44% de similitud; las parcelas P4 con P9 con 44%, seis parcelas del total alcanzan valores de entre 43% y 44% del total. Lo que señala una mediana similitud en su composición florística. Otras parcelas estuvieron menos representadas con valores que no alcanzan al 50% de similitud en su composición florística.

Tabla 4. Similitud e índice de Distancia de Jaccard, para 10 parcelas de 1 ha en bosque de terraza alta.

Similarity and Distances Index Jaccard Paired Group (UPGM) Cophen. Corr.

0,8624	
--------	--

	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10
P1	1									
P2	0,396226	1								
P3	0,280576	0,398374	1							
P4	0,358209	0,313433	0,440559	1						
P5	0,352518	0,263889	0,422819	0,449664	1					
P6	0,321918	0,298611	0,427632	0,435065	0,493421	1				
P7	0,305344	0,299213	0,354167	0,381944	0,339869	0,363636	1			
P8	0,320896	0,285714	0,34	0,348684	0,343949	0,35	0,437037	1		
P9	0,363636	0,279412	0,387755	0,444444	0,380645	0,386076	0,340136	0,309677	1	
P10	0,410853	0,323308	0,460993	0,448276	0,421053	0,398734	0,33557	0,375839	0,475177	1

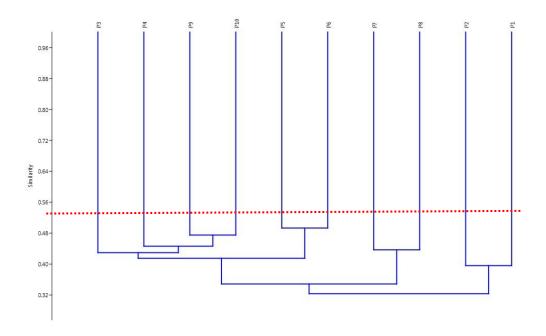


Figura 22. La figura muestra el índice de similaridad y distancia de Jaccarad.

Paired Group (UPGM), con un coeficiente de Correlación de 0.8624 para 10

parcelas

4.1.8. Análisis de componentes principales (PCA)

Para el análisis de todas las parcelas también se utilizó el Análisis de Componentes Principales (PCA), para las especies más dominantes y las que tengan el mayor índice de valor de importancia, relacionada con el tipo de bosque o formación vegetal.

Este análisis es una práctica utilizada para comprimir la dimensionalidad de un conjunto de datos. Utiliza para hallar las causas de la variabilidad de los datos y ordenarlos por importancia.

Para el análisis de Componentes Principales (principal component analysis, PCA), se utilizó el Software "Estimates 5" Statistical Estimation of Species Richness and Shared species from samples (Melo y Vargas 2003), que nos permitirá realizar el análisis de todos los componentes para la abundancia relativa de las especies vs. Parcelas.

La figura 23 muestra el análisis por componentes principales (PCA), para 15 especies basado en la abundancia relativa, se puede agrupar las parcelas P1, P2, P3, P5 y P7 en el PCA 1 y en el PCA 2 las parcelas P4, P6, P8, P9, y10 respectivamente. Con estos dos ejes se explica el 63,48% de variabilidad total de las observaciones. Por lo tanto las especies *Tetragastris altissima*, *Euterpe precatoria*, *Iriartea deltoidea* y *Jacaranda copaia* están asociadas a al PCA 1. (Bosque terraza alta). Las especies *Brosimum lactescens*, *Pourouma minor*, *Pseudolmedia laevis*, *Meliosma hebertii*, *Siparuna decipiens y Ocotea bofo* están asociados al PCA 2 respectivamente. Este análisis nos muestra un patrón definido para la distribución de las especies con la mayor cantidad relativa para cualquiera área de investigación.

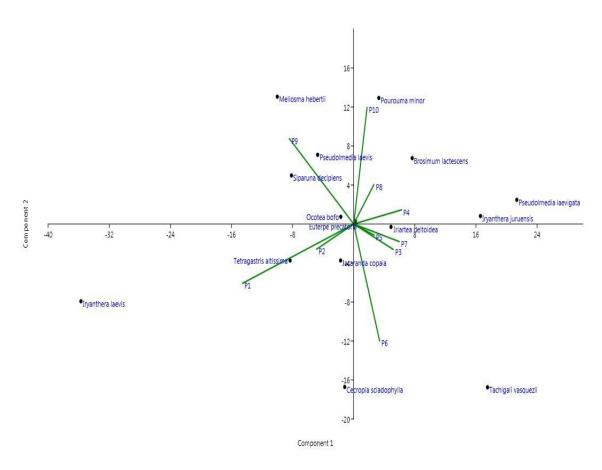


Figura 23. Distribución de las especies según el Análisis de Componentes Principales (PCA)

CONCLUSIONES

- 1. Se ha determinado seis clases altimétricas de la estructura del bosque; separadas cada 5 m, donde se puede evidenciar que existen mayor cantidad de árboles según la clase; 1 347 árboles en la clase altimétrica de 6-11,99, seguida de 1 926 árboles en la clase altimétrica de 12-17,99 respectivamente. En las clases altimétricas de ≤5,99 se encuentran 43 árboles. Mientras que en la clase altimétrica ≥30 se encuentran representados por 105 árboles. Se puede evidenciar que la mayor cantidad de árboles se encuentran concentrados en la clase altimétrica de 12-17,99 con (1 926 árboles del total). Sin embargo la mayoría de los árboles se encuentra concentrados en dos clases de 6-11,99 y 12-17,99 haciendo un total de (3 273 árboles para todo el área de estudio), que representan el 73,89% del total de árboles. Esto evidencia que la estructura vertical de un bosque de terraza alta en la Localidad de Loboyoc, está constituido por tres estratos: estrato superior representado por árboles con clases altimétricas de 24-29,99 y ≥ a 30 m (313 árboles), un estrato medio representado por árboles con clases altimétricas de 12-17,99 y 18-23,99 (2 726 árboles); y un estrato inferior representado por árboles con clase altimétricas de 6-11,99 y ≤5,99 (1 390 árboles) respectivamente. La estructura horizontal del bosque de terraza alta, está conformada por 6 diferentes clases diamétricas, donde se puede evidenciar que existen mayor cantidad de árboles (2 067) en la clase diamétrica de 10-19,99, seguida de 1 242 árboles en la clase diamétrica de 20-29,99 respectivamente. En las clases diamétricas de ≤9,99 se encuentran 6 árboles. Mientras que en la clase diamétrica ≥50 se encuentran representados por 391 árboles.
- 2. Las parcelas mejor representadas en riqueza de especies son P6, P5, P10 y P9 respectivamente. Las parcelas menos representadas en riqueza de especies son P2, P1, P7 respectivamente. Estos resultados son bajos en comparación con otros estudios realizados en

1 ha de bosque de terraza alta en la provincia de Tambopata, utilizando la misma metodología de trabajo de campo. La riqueza de especies para este tipo de bosque, es particular; ya que el 100% de las parcelas ha sido sometido a extracción selectiva de las principales especies forestales; y los resultados son más bajos respecto a otros bosques que se encuentran en mejor estado de conservación. En síntesis este tipo bosque de tierra firme actualmente se encuentra en estado de recuperación; para mantener su estabilidad dinámica. El promedio para Shannon- Wienner es de 4,04 y de α -Fisher es de 39,90, lo que indica que existe una alta diversidad de especies. Los rangos fluctúan entre valores de 3,7-4,2 para Shannon- Wienner. Para α -Fisher los valores fluctúan entre α -Fisher 25,61-53,7 respectivamente.

3. Se ha reportado para toda el área de estudio en un bosque de terraza alta la composición florística global, estando representada por 4 429 árboles ≥ 10 cm de DAP, distribuidos en 254 especies, 165 géneros y 53 familias. La composición florística muestra las 15 familias más abundantes con el mayor número de géneros para 10 parcelas, siendo la más representativa la familia Fabaceae con 25 géneros, la familia más abundante con el mayor número de especies más representativas son Fabaceae con (38 especies), la familia más abundante con el mayor número de individuos para 10 parcelas es: Moraceae (620 individuos), los géneros más abundante con el mayor número de especies para 10 parcelas. son: Inga y Protium (7 especies), el género más abundante con el mayor número de individuos para 10 parcelas estuvo representado por; Pseudolmedia (265 individuos), la composición florística para las 15 especies más abundantes con el mayor número de individuos para 10 parcelas estuvo representado por: Tetragastris altissima (254 individuos).

4. Con un coeficiente de correlación de 0,8624 se muestran los resultados que señalan la similitud o disimilitud entre las respectivas parcelas a través del índice de distancia; las parcelas que tienen mayor similitud son: P5 con la P6 con un 49% de similitud, seguida de las parcelas: P3 con la P4 con 44% de similitud; las parcelas P4 con P9 con 44%, seis parcelas del total alcanzan valores de entre 43% y 44% del total. Lo que señala una mediana similitud en su composición florística. Otras parcelas estuvieron menos representadas con valores que no alcanzan al 50% de similitud en su composición florística. El análisis por componentes principales (PCA), para 15 especies basado en la abundancia relativa, se puede agrupar las parcelas P1, P2, P3, P5 y P7 en el PCA 1 y en el PCA 2 las parcelas P4, P6, P8, P9, y10 respectivamente. Con estos dos ejes se explica el 63,48% de variabilidad total de las observaciones. Por lo tanto las especies Tetragastris altissima, Euterpe precatoria, Iriartea deltoidea y Jacaranda copaia están asociadas a al PCA 1. (Bosque terraza alta). Las especies Brosimum lactescens, Pourouma minor, Pseudolmedia laevis, Meliosma hebertii, Siparuna decipiens y Ocotea bofo están asociados al PCA 2 respectivamente. Este análisis nos muestra un patrón definido para la distribución de las especies con la mayor abundancia relativa para toda el área de estudio.

RECOMENDACIONES

- ✓ Se recomienda implementar parcelas de monitoreo permanente en el Vivero el Bosque, para realizar un estudio de la dinámica del bosque, utilizando la metodología estandarizada de RAINFOR para bosques tropicales, lo que permitirá realizar comparaciones con otras áreas de la Amazonía.
- ✓ Estandarizar los métodos y técnicas para la evaluación de la comunidad vegetal, que garantice la inclusión no sólo de árboles ≥ de 10 cm de DAP, sino de otras categorías diamétricas menores, para realizar un mejor análisis de la comunidad vegetal.
- ✓ Es necesario en el bosque de la Universidad nacional Amazónica de Madre de Dios, establecer un arboretum representativo de toda la comunidad vegetal, que sirva para la capacitación permanente de estudiantes y técnicos forestales de la región de Madre de Dios.
- ✓ Es preciso que en este tipo de estudios se realice la colección de especímenes vegetales, ya que estos son los viucher o exciccata que serán el soporte de las colecciones del herbario local de la Universidad, y sirva de fuente para diferentes tipos de usuarios e investigadores en otras líneas de investigación.
- ✓ Será fundamental que la universidad, realice el intercambio de expertos en diferentes metodologías y técnicas de campo para estudiantes y profesores; para poder elaborar un protocolo común de campo, para las evaluaciones de la estructura, la diversidad y la composición florística.

REFERENCIA BIBLIOGRAFICA

AUCCAHUASI, A. W., BACA R., S., CALLOMAMANI, I. W., DUEÑAS S.J., CHAVEZ, M. D.y BORDA, G.T. 2010. Ccaracterización demonológica de un bosque de terrazas altas en la estación experimental Fitzcarrald, Tambopata Madre de Dios. Libro de Resúmenes del XIII Congreso Nacional de Botánica, Universidad Nacional Agraria de la Selva, Tingo María, Perú.

BÁEZ, Q. S.; DUEÑAS, L. H.; NIETO, R. C. MAMANI, J. Y GÁRATE, Q.J. 2017. Flora y vegetación de la Microcuenca Chonta, distrito Tambopata y Laberinto, Departamento de Madre de Dios –Perú. Revista Científica Mentor Forestal (2017)1-10

BÁEZ, Q. S. Y OBLITAS, M.J. 2017. Diversidad arbórea y estructura en un bosque de tierra firme del sector Unión Chonta, distrito Tambopata - región Madre de Dios. Revista Científica Mentor Forestal (2017) 24-25

BÁEZ, Q. S. 2014. Evaluación demonológica de Especies Forestales en un Bosque de Tierra firme en la Concesión de Conservación Gallocunca, Sector Baltimore, Distrito Tambopata, Provincia Tambopata – Departamento Madre de Dios. Tesis para Optar al Título de Ingeniero Forestal y Medio Ambiente. Facultad de Ingenierías. Escuela Académico Profesional de Ingeniería Forestal y Medio Ambiente. Universidad Nacional Amazónica de Madre de Dios, Perú. 199 pp.

BALCÁZAR, R. Y MONTERO, J. (2001). Estructura y Composición Florística de los Bosques en el Sector Este de Pando, Bolivia. Proyecto BOLFOR. Proyecto de Manejo Forestal Sostenible de Pando. PANFOR. Documento Técnico N° 3. 65 pp.

BUDOWSKY. G. 1954. La identificación en el campo de los árboles más importantes de la América Central. Turrialba-Costa Rica. Tesis Magister Agrícola. Instituto Interamericano de Ciencias Agrícolas. 326p.

BALVANERA, P. 2012. Los servicios ecosistémicos que proveen los bosques neo tropicales. *Ecosistemas* 21(1): 136-147.

BRAKO, L. Y ZARUCCHI, S.L., 1993. Catálogo de las Angiospermas y Gimnospermas del Perú. Monogr. Sist. Bot. Missouri Botanical Garden. 45: 1-1286.

BROWN, D., Y KAPPELLE, M. (2001). Introducción a los bosques nublados de Latinoamérica.

CANO, A. Y STEVENSON, P. (2009). Diversidad y Composición Florística de tres tipos de Bosques en la estación Biológica de Caparú, Vaupés. Revista Colombiana Forestal Vol. 12. Diciembre. 18 pp.

CASTILLO A. Y NALVARTE W. 2007. Descripción demonológica de 26 especies forestales de importancia comercial: zonas de Tahuamanu y Alto Huallaga. Cámara Nacional Forestal en convenio con la Organización Internacional de las Maderas Tropicales. Lima. 74 p.

CACHAY, C. Y RÍOS, W. 2010. IVI y Caracterización dendrológicas de las especies forestales en el Cordillera Escalera Tarapoto. Resumen de libro Botánica, XIII Congreso Nacional de Botánica. UNAS. Tingo María. 190 p.

CERÓN, C. Y MONTALVO, C. 1997. Composición de una hectárea de bosque en la comunidad Huaorani de Quehueiri – ono, Zona de Amortiguamiento del Parque Nacional Yasuni, Napo, Ecuador. En: Estudios biológicos para la conservación, Eco Ciencia. Quito (Ed.). 279 – 298.

COLINVAUX, P. A. Y P. E. DE OLIVEIRA. 2001. Amazon plant diversity and climate through the Cenozoic. Paleography, Paleoclimatology, Paleoecology 166: 51-63.

COGOLLO, A. Y PIPOLY, J. J. 1993. Phytodiversity of Las Orquideas National Park, Antioquia / Chocó, Colombia. Low land phase. Investigation project. 55 pp.

COLIX .R. 1970. Identificación dendrologica y anatómica de 37 especies arbórea de Honduras. Tesis Magister Agrícola. Instituto Interamericano de Ciencias Agrícolas. 180 pp.

CUEVA, A. D. 2014. Caracterización Dendrológica en 1 ha de bosque de terraza alta en el Centro de investigación de la localidad de Fitzcarrald km 21,5, distrito de Tambopata, provincia de Tambopata - Madre de dios" Tesis para Optar al Título de Ingeniero Forestal y Medio Ambiente. Facultad de Ingenierías. Escuela Académico Profesional de Ingeniería Forestal y Medio Ambiente. Universidad Nacional Amazónica de Madre de Dios, Perú.

Chávez, A., Guariguata, M., Cronkleton, P., Menton, M., & Quaedvlieg, J. (Diciembre de 2012). Superposición espacial en la Zonificación de bosques en Madre de Dios Implicaciones para la sostenibilidad del recurso castañero. CIFOR infobrief.

DANCE, J. Y OJEDA, W. 1979. Evaluación de los Recursos Forestales del Trópico Peruano. Lima, (Peru): UNA - LA MOLINA. 119 p.

DENMAN, K.L., BRASSEUR, G., CHIDTHAISONG, A., CIAIS, P., COX, P.M., DICKINSON, R.E., HAUGLUSTAINE, D., HEINZE, C., HOLLAND 2007: Couplings between changes in the climate system and biogeochemistry. En: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (eds.). *Climate change 2007: the physical science basis*.

Contribution of Working Group I Assessment Report of the Intergovernmental Panel on Climate Change, IVth, pp: 501-587. Cambridge University Press, Cambridge, UK.

DILLON, M., SAGASTEGUI, A., SÁNCHEZ, I., LLATAS, S., & HENDSOLD, N. (1995). Floristic inventory and biogeographic analysis of montane forests in northwestern Perú. En: Xhurchill, S et al. (eds) Biodiversity and conservation of Neotropical Montane Forest. The New York Botanical Garden, New York.

Dirección de Conservación y Planeamiento de Recursos Hídricos, Área de Aguas Superficiales. (2010). Estudio Diagnóstico Hidrológico de la Cuenca Madre de Dios. Lima, Perú.

FAO. (1999). Situación de los bosques del mundo. Roma: Ed: FAO 157 pp.

DUELLMAN, W. E. 1990. Field Manual. Cuzco Amazónico. BIOTROP (Neo tropical Biological Diversity). Museum of Natural History and Department of Systematic and Ecology. 120 P.

DUEÑAS,L.H. 2007. Estudio y Caracterización Dendrológica de especies forestales en la Concesión Forestal Río Piedras SAC. UNAMAD. 67 pp.

DUEÑAS. H. Y NIETO. C. 2010. Estudio y Caracterización dendrológica de las principales especies forestales de la Amazonía peruana. UNAMAD. 1er Edic. 244 pp.

DUEÑAS L.H. 2010. Diversidad y Composición Florística de árboles a través de una gradiente altitudinal en la localidad de Santa Rosa, Tambopata, Madre de Dios. Memoria XIII Congreso Nacional de Botánica (20 al 25 de setiembre del 2010. Tingo María, Perú). 2010. 190 pp.

DUEÑAS L.H. 2012. Diversidad y Composición Florística y Stock de Carbono almacenado en la Biomasa de 2 has de Bosque Húmedo Tropical, en la reserva Ecológica de Inkaterra, Tambopata-Madre de Dios. 2012. Informe Final de Investigación. Oficina General de Investigación. Universidad Nacional Amazónica de Madre de Dios. 61 pp.

FAO. (1995). Evaluación de los recursos forestales, países tropicales. Estudio FAO Montes. Roma, Italia p 32-36.

FAO (1998). FRA. 2000. Términos y definiciones, programas de evaluación de los recursos forestales, Documento de trabajo 1. Roma.

FONT QUER, P. (1985). Dicci0nario de Botánica. 9na reimpresión, 1ra ed. Barcelona: Editorial Labor, 1244 pp.

GOBIERNO REGIONAL MADRE DE DIOS. (2012). Plan de Ordenamiento Territorial del Departamento de Madre de Dios - Documento síntesis. Puerto Maldonado, Perú.

GENTRY, A.H. (1988A). Chances in plant community diversity and floristic composition on environmental and geographical gradient. Annals of the Missouri Botanical garden, 75,1-34.

GENTRY, A.H. (1988B). Tree species richness of upper Amazonian forest. Proceedings of the National Academy of Sciences of United states of America, 85, 156-159.

GENTRY, A.H. (1989). Checklist of plants, Zona Reservada de Tambopata, Perú. Missouri Botanical Garden, sin publicar.

GENTRY, A. 1995. Patterns of diversity and composition in Neotropical montane forests. Pages. 103 – 126 en Churchill, S., H. Balslev, E. Forero y J. L. Luteyn (Eds.). Biodiversity and Conservation of Neotropical Montane forests. The New York Botanical Garden. Bronx.

GUARIGUATTA, M. R., Y KATTAN, G. H. (S.F.). Ecología y conservación de bosques Neo tropicales. Cartago: Ed: LUR 691 p.

HALFFTER, G., Y ESCURRA, E. (1992). ¿Qué es la biodiversidad? En: Halffter, G, (comp). L a diversidad biológica de Iberoamérica. Acta Zool. Mexicana/programa Iberoamericano de ciencia y tecnología para el desarrollo. México p.3-4.

HAMILTON, D. P. (2001). The Swan River: Water Quality. (28(2)), 36-37. Journal of the Australian Water Association.

HEYWOOD, V.H. 1995. *Global Biodiversity Assessment*. United Nations Environment Programme. Cambridge University Press, Cambridge.

IIAP (INSTITUTO DE INVESTIGACIÓN DE LA AMAZONÍA PERUANA) (2009) Propuesta de zonificación ecológica y económica del departamento de Madre de Dios. 210 pp.

JARAMILLO, C., M. J. RUEDA Y G. MORA. 2006. Cenozoic Plant Diversity in the Neotropics. Science 311: 1893-1896.

JIMÉNEZ .H. 1967. La Identificación de los arboles tropicales por medio de características del tronco y la corteza. Tesis magister Agrícola. Instituto interamericano de ciencias agrícola de O. E. A Centro de Enseñanza e Investigación Turrialba, Costa rica 104 pp.

LANGENDEON, F. Y GENTRY. A. 1991. The structure and diversity of rain forest at Calima, Chocó region, Western Colombia. *Biotropica* 23(1): 2 – 11.

LA TORRE, M. (2003). Composición Florística y Biodiversidad en el bosque relicto Pampa Hermosa (Chamchamayo. Junín) e implicancias para su conservación. Tesis para optar el título de Magister en Ciencias. Lima, Perú: UNALM.

LUQUE, CH. R. Y FARFÁN, H. R. 2010. Estudio y caracterización demonológica de árboles forestales en la comunidad Monte Sinai, Tambopata – Madre de Dios. Libro de Resúmenes del XIII Congreso

Nacional de Botánica, Universidad nacional Agraria de la Selva, Tingo María, Perú

MAGURRAN, A. E. 1988. *Ecological diversity and its measurement*. Princeton University Press, New Jersey, 179 pp.

MALHI, Y., GRACE, J. 2000. Tropical forests and atmospheric carbon dioxide. *Trends in Ecology and Evolution* 15:332-337.

MATTEUCCI, S. Y COLMA, A. 1982. Metodología para el estudio de la vegetación. Secretaría General de la Organización de los Estados Americanos. Programa regional de desarrollo Científico y Tecnológico. Washington, D.C. 166 pp.

MELO, C. Y VARGAS, R. 2003. Evaluación ecológica y silvicultural de ecosistemas boscosos. UNIVERSIDAD DEL TOLIMA CRQ – CARDER – CORPOCALDAS – CORTOLIMA. Ibagué. 222 pp.

METCALFE. F. R. Y CHALK. L. 1950. Anatomy of the dicotyledons. Oxford, Clarendon Press. 724 p.

Ministerio de Agricultura Autoridad Local del Agua Maldonado. (2010). Diagnóstico hidrológico de la Cuenca de Madre de Dios. Lima, Perú.

PALACIOS, W. 1997. Composición, estructura y dinamismo de una hectárea de bosque en la Reserva Florística El Chuncho, en: Mena, P.A., A. Soldi, R. Alarcón, C. Chiriboga & L. Suárez (eds.). Estudios biológicos para la conservación, diversidad, ecología y etnobiología. Eco ciencia. Quito, pp. 299-305.

PHILIPS, O., Y GENTRY, A. (1994). Increasing turnover through time in tropical forest Science 263:954-958.

PHILLIPS, O., MALHI, Y., HIGUCHI, N., LAURANCE, W., NUÑEZ, P., VÁSQUEZ, R. (1998). Changes in the carbon balance of tropical forest: evidence from long-term plots. Science 282:439-442.

PHILLIPS, O., VÁSQUEZ, M., NUÑEZ, V., LORENZO, M., CHUSPE, Z., GALIANOS, S. (S.F.). EFFICIENT PLOT-BASED FLORISTIC ASSESSMENT OF TROPICAL FOREST. 19, 629-645. Cambridge University Press: Journal of tropical ecology.

PHILLIPS, O., VÁSQUEZ, M., NÚÑEZ, V., LORENZO, M., CHUSPE, Z., GALIANOS, S. (2003). Efficient Plot-Based Floristic Assessment Of Tropical Forests. 19: 629-645. (J. o. ecology, Ed.) Cambridge University Press.

PITMAN, N., TERBORGHG, J., SILMAN, M., NÚÑEZ, V., NEILL, D., CERON, C. (2001). Dominance and Distribution of tree species in Upper Amazonian Terra Firme Forest. Ecology.

PITMAN, N. C. A., J. W. TERBORGH, M. R. SILMAN, V. P. NUÑEZ, D. A. NEILL, C. E. CERÓN, W. A. PALACIOS Y M. AULESTIA. 2002. A comparison of the tree species diversity in two upper Amazonian forests. Ecology 83(11): 3210-3224.

PITMAN, N., TERBORGH J., NÚÑEZ P. Y VALENZUELA, M. 2003. Los árboles de la cuenca del Río Alto Purús: Pág. 53-61. *En:* Leite Pitman, R., N. Pitman y P. Álvarez (eds.), *Alto Purús: Biodiversidad, conservación y manejo*. Duke University Center for Tropical Conservation y Gráfica Impresso, Lima.

PRANCE, G. T. (1982). The Amazon: Earth-s Most Dazzlinng Forest. Garden. 6(1):2-10.

RÍOS, M. 2006. Composición florística, estructura y diversidad, en la Estación Biológica Quebrada Blanco (EBQB) Loreto Perú. pp. 1, 22-28.

SÁNCHEZ, D. Y VELÁSQUEZ, O. 1997. Estudio de la diversidad florística de la región de los Farallones de Citará (Chocó Biogeográfico). Universidad nacional de Colombia. Sede Medellín. Facultad de Ciencias. Medellín. 134 pp.

SOLER. 2012. Índice de valor de Importancia, diversidad y similaridad florística de especies leñosas en tres ecosistemas de los llanos centrales de Venezuela. Agronomía. Tropical. 62(1-4):25-37-2012

SPICHIGER, R., LOIZEAU, P., LATOUR, C. Y BARRIERA, G. 1996. Tree species richness of south-western Amazonian forest (Jenaro Herrera, Perú). *Candollea* 51(2): 559-577.

STROPP, J., H. TER STEEGE, Y. MALHI, ATDN Y RAINFOR. 2009. Disentangling regional and local tree diversity in the Amazon. Ecography 32: 46-54.

SWAMY, PH.D. 2008. Un estudio integrado de los procesos de regeneración de árboles en un bosque amazónico. TRC. Madre de Dios, Perú.

TER STEEGE, H. 2000. An Analysis Of The Floristic Composition And Diversity Of Amazonian Forest Including Those Of The Guiana Shield. Journal of Tropical Ecology. 16:801-828 pp

TER STEEGE, H. 2013. Hyper dominance in the Amazonian Tree Flora. DOI: 10.1126/science.1243092 . *Science* 342

TERBORGH, J. Y E. ANDRESEN. 1998. The composition of Amazonian forests: patterns at local and regional scale. Journal of Tropical Ecology 14: 645-664.

VALENCIA, R., R.B., F., VILLA, G., CONDIT, R., SVENNINGS, J., HERNANDEZ, C. (2004). Tree species distributions and local habitat

variation in the Amazon: large forest plot in eastern Ecuador. Ecuador: Journal of Ecology 92:214-229.

VAN DER HAMEN, T. (1992). Historia, Ecología y vegetación, comparación colombiana para la Amazonía "Araucara" Bogotá.

VAN DER HAMMEN, T., Y HOOGHIEMSTRA, H. (2001). Historia y paleoecologia de los bosques montanos, andinos neo tropicales. En M. Kappelle & A.D.Brown (eds), bosques nublados del neo trópico, Instituto Nacional de Biodiversidad (INBio), Santo Domingo de Heredia.

VÁSQUEZ, M. R. 1997. Flórula de la Reservas Biológicas de Iquitos. Monographs in systematic botany from the Missouri Botanical 63: 1-1046.

VÁSQUEZ, R. Y PHILLIPS, O. 2000. Allpahuayo: Floristic, structure, and dynamics of a high –diversity forest in Amazonian Perú. *Ann. Missouri Botanical Garden* 87: 499 – 527.

VELA, C. 2007. Estructura y composición florística del llano inundable. Tesis para optar el grado de Ing. Forestal, FCFMA-UNSAAC, 55 pp.

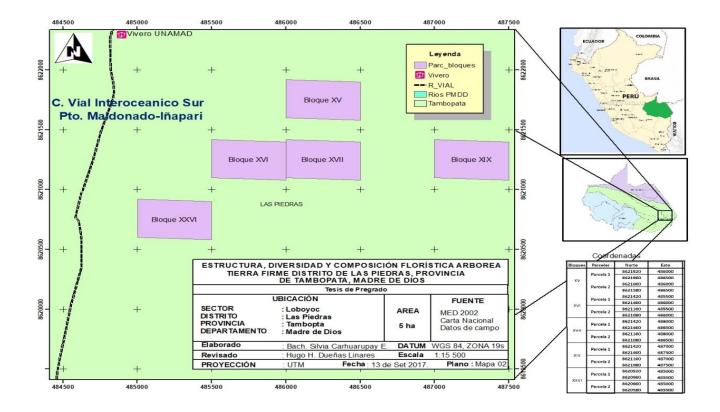
WEBSTER, L. (1995). The panorama of Neotropical cloud forest. En: A.P. Churchill, H Balslev.E. Forero y J.L. Luteyn (eds) Biodiversity and conservation of Neotropical Montane forest. The New York Botanical Garden, New York.

WHITTAKER, R. H. 1972. Evolution and measurement of species diversity. *Taxon*, **21**(2/3):

213-251.

WILSON, M. V. Y A. SHMIDA. 1984. Measuring beta diversity with presence-absence data.

Journal of Ecology, **72**: 1055-1064.


WILLS, C., R. CONDIT, R. B. FOSTER Y S. P. HUBBELL. 1997. Strong density- and diversity-related

effects help to maintain tree species diversity in a neotropical forest. Proceedings of the National Academy of Science of the United States of America 94: 1252-1257

WRIGHT, S. J. 2002. Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia 130: 1-14.

ANEXOS

Anexo 1. Croquis de ubicación de las parcelas en el Vivero Fundo UNAMAD, localidad Loboyoc, Distrito Las Piedras, Provincia Tambopata, Dpto. Madre de Dios

Anexo 2. Clases Diamétricas para todo el área de estudio (10 parcelas de 1 ha, en un bosque de tierra firme).

Clase diamétrica											
		10-	20-	30-	40-	_					
	≤9,99	19,99	29,99	39,99	49,99	≥50 Total general					
Cuenta de Clas	е										
diamétrica	6	2067	1242	485	238	391 4429					
%	0,14	46,67	28,04	10,95	5,37	8,83 100					

Anexo 3. Clases Altimétricas para todo el área de estudio (10 parcelas de 1 ha, en un bosque de tierra firme).

Clases Altimétricas												
	≤5,99	6-11,99	12-17,99	18-23,99	24-29,99	≥30	Total general					
N° árboles	43	1347	1926	800	208	76	4400					
%	0,977	3,.61	43,77	18,18	4,73	1,73	100					

Anexo 4. Matriz para Riqueza y Diversidad

												Total
N°	Especies	P1	P2	Р3	P4	P5	P6	P7	P8	P9	P10	general
1	Guarea gomma	0	0	0	0	0	0	2	0	0	0	2
2	Hymenaea oblongifolia	0	0	0	0	0	0	0	0	1	0	1
3	Micropholis guyanensis	0	0	0	0	0	0	2	0	0	0	2
4	Oenocarpus bataua	0	0	0	0	0	0	1	0	0	0	1
5	Sloanea guianensis	0	0	0	0	0	0	1	0	0	0	1
6	Nectandra oblonga	0	0	0	0	0	0	0	0	1	0	1
7	Nectandra longifolia	0	0	4	0	0	0	0	0	0	0	4
8	Abarema jupumba	0	0	0	0	0	0	1	0	2	1	4
9	Agonandra silvatica	0	0	0	4	0	0	1	0	1	0	6
10	Aiouea grandiflora	0	0	1	0	0	0	0	0	1	0	2
11	Alchornea glandulosa	0	0	1	0	0	0	1	1	0	1	4
12	Alchornea triplinervia	0	0	0	2	1	0	0	0	0	1	4
13	Allophylus amazonica	0	0	0	0	0	1	3	0	0	0	4
14	Alseis peruviana	0	0	0	0	0	0	3	3	0	0	6
15	Amburana cearensis	0	0	0	1	0	0	1	0	0	0	2
16	Ampelocera edentula	4	0	0	0	0	0	0	1	0	0	5
17	Andira suranimensis	0	0	1	1	0	0	0	0	0	0	2
18	Aniba muca	0	0	2	0	0	0	0	0	0	0	2
19	Aniba peruviana	5	1	1	4	5	4	0	4	1	2	27
20	Annona ambotay	0	0	2	0	1	2	0	0	0	3	8
21	Annona pittieri	0	0	0	0	1	1	0	0	6	4	12
22	Anthodiscus peruanus	0	5	0	0	0	0	0	0	0	0	5
23	Apeiba membranacea	4	1	2	16	1	6	1	10	5	6	52
24	Apuleia leiocarpa	2	1	1	0	0	0	1	2	0	1	8
25	Aspidosperma macrocarpon	0	0	0	0	0	1	1	0	0	0	2
	Aspidosperma											
26	marcgravianum	0	3	1	1	0	1	0	0	0	0	6
27	Aspidosperma parvifolium	8	1	2	2	2	2	1	3	1	3	25
28	Astronium lecointei	0	2	2	1	0	0	1	2	0	0	8
29	Bathysa obovata	0	0	0	0	0	0	0	0	6	0	6

30	Batocarpus amazonicus	1	0	0	0	0	0	0	0	1	3	5
31	Beilschmiedia tovarensis	6	11	6	5	4	1	4	10	7	5	59
32	Bertholletia excelsa	1	0	2	5	3	2	0	1	1	2	17
33	Brosimum alicastrum	0	0	0	1	0	0	9	0	1	0	11
34	Brosimum guianense	0	0	0	3	0	2	1	4	0	0	10
35	Brosimum lactescens	3	19	20	25	13	10	0	14	9	25	138
36	Brosimum parinarioides	0	0	1	0	1	1	1	3	1	0	8
37	Brosimum rubescens	0	0	0	0	0	1	0	0	0	0	1
38	Brosimum rubescens	0	0	1	0	1	0	4	0	4	3	13
39	Buchenavia grandis	0	0	0	0	0	0	0	2	0	2	4
40	Cabralea canjerana	0	0	0	3	0	1	0	0	0	2	6
41	Calatola costaricensis	0	0	0	0	0	0	4	1	0	0	5
42	Calatola venezuelana	0	0	2	1	4	5	0	0	0	0	12
	Calycophyllum											
43	megistocaulum	9	0	0	1	0	1	3	0	4	0	18
44	Calyptranthes bipennis	0	0	1	0	0	0	1	2	3	0	7
45	Calyptranthes densiflora	0	0	0	0	2	1	0	0	0	0	3
46	Capirona decorticans	4	5	4	3	1	4	5	2	0	2	30
47	Carpotroche longifolia	0	0	0	0	0	0	0	1	0	0	1
48	Caryocar amygdaliforme	0	0	0	0	0	0	1	0	0	0	1
49	Caryocar glabrum	0	3	1	0	0	0	0	0	0	0	4
50	Caryodaphnopsis fosteri	0	0	0	0	0	1	0	0	1	0	2
51	Casearia arborea	1	0	0	0	0	0	3	2	0	0	6
52	Casearia decandra	0	0	0	0	0	1	0	0	0	0	1
53	Casearia pitumba	8	0	0	5	3	1	0	0	3	4	24
54	Cassipourea peruviana	0	0	1	3	0	0	0	0	0	0	4
55	Castilla ulei	1	0	0	0	4	0	1	1	2	1	10
56	Cecropia mebranacea	0	6	1	0	0	0	1	3	0	0	11
57	Cecropia peltata	0	0	0	0	0	1	0	0	0	0	1
58	Cecropia sciadophylla	16	8	7	8	13	22	11	7	6	1	99
59	Cedrela odorata	0	0	0	0	3	0	0	0	2	0	5
60	Cedrelinga cateniformis	0	0	0	0	3	0	0	0	0	0	3
61	Ceiba pentandra	0	0	0	0	0	0	0	0	0	1	1

62	Ceiba samauma	0	1	0	1	0	0	1	0	1	0	4
63	Celtis schippii	3	0	0	1	0	2	4	3	0	5	18
64	Chaunochiton keppleri	3	1	0	0	1	1	0	0	0	2	8
65	Chromolucuma sp	0	0	3	3	1	2	0	0	1	0	10
66	Chrysophyllum argenteum	6	1	0	0	1	0	0	0	0	2	10
67	Chrysophyllum ovale	0	0	0	0	0	0	0	0	3	0	3
	Chrysophyllum											
68	venezuelanense	0	4	4	2	0	8	8	4	0	0	30
69	Clarisia biflora	0	0	0	2	0	0	2	1	0	0	5
70	Clarisia racemosa	1	2	4	2	3	3	2	0	3	0	20
71	Conceveiba guianensis	0	0	1	3	1	3	6	3	0	1	18
72	Copaifera paupera	0	1	0	0	0	1	0	0	0	0	2
73	Cordia toqueve	0	0	0	2	0	0	0	1	1	1	5
74	Couma macrocarpa	1	0	0	0	0	0	0	0	0	0	1
75	Couratari guianensis	0	1	1	0	0	0	0	0	1	0	3
76	Couratari macrosperma	0	3	1	0	1	0	1	0	0	0	6
	Crepidospermum											
77	goudotianum	0	0	1	0	0	1	0	0	0	0	2
78	Cupania cinerea	0	0	0	0	0	0	0	2	0	0	2
79	Dacryodes peruviana	0	0	0	1	1	0	0	0	0	3	5
80	Dialium guianense	6	2	0	3	1	1	1	0	1	3	18
81	Diospyros artanthifolia	0	0	0	0	0	0	0	0	1	0	1
82	Diospyros ebenifolia	0	0	0	0	0	0	0	0	0	1	1
83	Diospyros poeppigiana	0	0	0	0	0	0	0	2	0	0	2
84	Diplotropis purpurea	2	0	0	0	0	0	0	0	1	0	3
85	Dipteryx micrantha	0	0	1	1	1	0	0	0	0	0	3
86	Drypetes gentryi	0	0	4	0	1	0	0	0	2	1	8
87	Dussia tessmannii	0	0	0	1	0	0	0	0	0	0	1
88	Ecclinusa guianensis	0	0	2	0	0	0	0	0	0	0	2
89	Endlicheria krukovii	0	0	0	0	1	0	0	0	0	0	1
90	Enterolobium cyclocarpum	1	0	0	1	0	1	0	0	2	2	7
91	Eriotheca globosa	2	0	0	0	2	1	0	0	0	0	5
92	Erisma incinatum	1	0	0	1	1	1	0	1	0	1	6

93	Eschweilera coriacea	13	0	5	8	1	6	2	4	3	8	50
94	Eugenia biflora	0	0	0	3	3	0	0	0	3	3	12
95	Eugenia egensis	2	0	0	0	0	0	0	0	0	0	2
96	Eugenia eggersii	0	0	0	0	0	0	0	3	0	0	3
97	Euterpe precatoria	31	19	33	12	17	23	26	39	20	31	251
98	Ficus gomelleira	1	0	0	1	0	0	0	0	1	3	6
99	Ficus pertusa	0	0	1	0	0	1	2	0	0	1	5
100	Fusaea longifolia	0	0	0	1	0	0	2	0	0	0	3
101	Galipea trifoliata	0	0	2	0	3	1	0	4	5	0	15
102	Garcinia macrophylla	0	0	0	0	1	0	0	0	0	0	1
103	Geissospermum laeve	3	1	1	0	1	5	2	0	1	0	14
104	Glycydendron amazonicum	0	0	0	0	0	1	0	0	1	0	2
105	Guarea gomma	2	1	5	2	2	4	0	5	4	5	30
106	Guarea kunthiana	0	0	3	0	2	3	0	4	2	2	16
107	Guarea pubescens	0	0	0	0	0	0	0	1	0	0	1
108	Guatteria megalophylla	1	0	2	0	0	0	0	0	2	3	8
109	Guatteria scalarinervia	12	8	0	3	1	0	2	0	2	3	31
110	Gustavia longifolia	0	0	0	1	0	0	0	0	1	2	4
111	Handroanthus serratifolius	0	0	1	0	0	2	0	2	0	0	5
112	Heisteria pallida	0	0	4	3	5	5	2	0	1	2	22
113	Heliantosthylis sprucei	6	0	0	1	2	0	0	0	0	0	9
114	Helicostylis tomentosa	4	0	0	0	5	3	3	2	5	5	27
115	Himatanthus sucuuba	1	1	0	0	1	0	3	0	0	0	6
116	Hirtella triandra	0	1	1	0	0	2	2	0	0	1	7
	Huberodendron											
117	swietenoides	1	2	0	1	0	1	0	0	1	2	8
118	Huertea glandulosa	0	0	0	1	0	1	0	0	0	0	2
119	Hymenaea oblongifolia	4	1	2	2	4	2	4	1	1	7	28
120	Inga alba	0	7	5	6	2	6	6	2	11	2	47
121	Inga auristellae	9	12	2	4	4	0	4	0	13	4	52
122	Inga capitata	0	0	0	0	1	1	1	2	0	0	5
123	Inga coruscans	0	0	0	0	1	0	0	1	0	0	2
124	Inga edulis	6	16	2	0	0	0	0	0	0	1	25

405	la sa la sta va a la ella	0	0	0	4	4	^	4	0	^	0	•
125	Inga heterophylla	0	0	3	1	1	0	1	0	0	0	6
126	Inga thibaudiana	0	0	0	2	0	0	0	0	0	0	2
127	Iriartea deltoidea	12	23	22	24	23	25	32	33	27	16	237
128	Iryanthera juruensis	0	0	7	26	9	12	18	13	10	5	100
129	Iryanthera laevis	41	14	8	4	3	6	0	1	25	0	102
130	Ixora peruviana	0	0	1	0	4	0	0	4	0	4	13
131	Jacaranda copaia	7	18	5	10	2	8	10	2	6	8	76
132	Lacistema aggregatum	0	0	0	0	3	2	0	2	0	0	7
133	Laetia procera	0	0	2	1	2	4	9	2	7	1	28
134	Leonia glycycarpa	0	0	2	4	1	5	3	0	2	5	22
135	Licania heteromorpha	0	3	1	0	0	0	0	0	0	3	7
136	Licania micrantha	0	0	1	0	1	2	2	2	0	1	9
137	Lindackeria paludosa	0	0	0	0	0	0	0	1	0	0	1
138	Lonchocarpus heptaphyllus	0	0	0	0	0	0	0	0	2	0	2
139	Luehea grandiflora	0	0	0	0	0	1	0	1	0	0	2
140	Manilkara bidentata	0	2	1	2	0	2	8	0	1	0	16
141	Maquira guianensis	0	0	2	6	2	2	0	0	3	3	18
142	Matayba guianensis	0	0	0	1	0	0	0	0	0	0	1
143	Matisia bicolor	1	0	0	1	0	0	0	0	0	0	2
144	Matisia malacocalyx	0	0	0	0	0	0	1	1	0	1	3
145	Maytenus macrocarpa	0	1	0	0	0	0	0	0	0	0	1
146	Meliosma hebertii	14	1	0	9	4	5	8	11	21	15	88
147	Mezilaurus itauba	0	1	4	1	0	0	0	0	0	0	6
148	Miconia calvescens	0	0	0	0	0	1	0	0	1	0	2
149	Miconia trinervia	0	0	0	0	1	1	0	0	0	0	2
150	Micropholis egensis	0	0	2	1	1	1	0	0	1	1	7
151	Micropholis guyanensis	3	0	0	4	1	0	0	6	5	2	21
152	Micropholis rosae	0	0	0	0	1	2	0	0	0	0	3
153	Minquartia guianensis	1	3	0	0	0	1	1	0	0	1	7
154	Mollinedia killipii	0	0	0	0	0	1	0	0	2	1	4
155	Myroxylon balsamum	0	1	1	0	0	0	0	0	2	1	5
156	Naucleopsis herrerensis	3	0	0	0	0	2	0	0	0	0	5
157	Naucleopsis imitans	0	0	2	3	2	3	1	0	3	0	14

158	Naucleopsis krukovii	0	0	0	0	5	2	1	1	0	0	9
159	Naucleopsis naga	4	0	5	6	1	3	3	3	4	5	34
160	Nectandra globosa	0	0	0	0	2	0	0	0	0	1	3
161	Nectandra longifolia	3	1	0	0	0	0	3	1	0	4	12
162	Neea floribunda	0	0	10	4	6	9	4	5	8	11	57
163	Ocotea aciphylla	15	9	13	10	2	2	8	0	3	3	65
164	Ocotea bofo	6	16	5	11	15	8	0	7	9	9	86
165	Ocotea longifolia	0	0	0	0	3	4	0	0	0	0	7
166	Ocotea obovata	0	0	0	1	0	0	0	1	1	1	4
167	Ocotea subrutilans	0	0	0	0	0	2	0	6	0	0	8
168	Oenocarpus bataua	4	1	4	0	1	0	0	5	6	5	26
169	Oenocarpus mapora	0	0	0	0	0	0	0	0	0	1	1
170	Ouratea iquitosensis	0	6	6	6	0	1	1	1	6	2	29
171	Oxandra xylipioides	3	0	0	0	0	0	1	1	1	1	7
172	Pachira aquatica	0	0	0	0	1	0	0	0	0	0	1
173	Parkia multifuga	0	0	0	0	0	1	0	0	0	0	1
174	Parkia nitida	0	0	0	0	1	0	0	0	0	0	1
175	Parkia pendula	0	0	1	3	2	0	0	0	0	1	7
176	Pausandra trianae	0	6	2	1	0	0	4	3	1	1	18
177	Perebea angustifolia	4	0	0	0	1	0	0	0	0	0	5
178	Perebea guianensis	0	0	2	0	0	0	0	0	0	0	2
179	Picramnia latifolia	0	0	0	0	0	0	0	1	1	0	2
180	Pleurothyrium krokovii	0	2	0	0	0	0	0	1	0	0	3
181	Poeppigia procera	1	2	0	0	0	0	1	1	0	0	5
182	Pourouma cecropiifolia	8	0	0	2	1	0	3	2	1	0	17
183	Pourouma guianensis	0	0	0	0	1	1	0	0	0	0	2
184	Pourouma minor	3	0	6	8	9	2	8	8	14	9	67
185	Pourouma tomentosa	0	4	0	0	0	1	0	0	0	0	5
186	Pouteria bangii	0	0	3	2	2	3	0	0	0	0	10
187	Pouteria guianensis	0	0	0	0	0	0	0	0	0	4	4
188	Pouteria torta	10	5	2	5	2	3	0	1	0	5	33
189	Protium sagotianum	0	0	0	27	0	0	0	2	0	12	41
190	Protium amazonicum	9	0	22	0	3	5	0	0	0	4	43

191	Protium apiculatum	0	0	0	0	1	1	0	0	0	0	2
192	Protium aracouchini	0	1	0	2	2	0	0	1	0	0	6
193	Protium nodulosum	0	0	0	0	3	3	0	0	0	0	6
194	Protium paniculatum	0	0	0	0	0	0	0	3	0	0	3
195	Protium sagotianum	1	0	0	1	3	6	15	2	19	2	49
196	Prunus debilis	2	0	0	1	0	0	0	0	0	0	3
197	Pseudolmedia laevigata	0	0	22	13	8	7	17	8	0	16	91
198	Pseudolmedia laevis	14	18	10	17	7	4	11	10	20	17	128
199	Pseudolmedia macrophylla	6	1	5	5	7	2	6	9	2	2	45
	Pseudopiptadenia											
200	suaveolens	0	0	0	0	1	0	0	0	0	0	1
201	Psidium sartorianum	0	0	0	0	0	0	1	1	0	0	2
202	Pterocarpus amazonicus	0	0	1	1	0	1	0	0	4	2	9
203	Pterygota amazonica	0	0	0	1	1	0	3	0	1	0	6
204	Qualea grandiflora	1	1	8	14	0	1	0	0	7	16	48
205	Qualea tessmannii	1	0	0	0	0	0	0	0	0	0	1
206	Quiina amazonica	9	8	1	0	0	0	0	0	0	1	19
207	Quiina florida	0	0	0	0	0	1	0	0	0	0	1
208	Rinorea lindeniana	13	6	0	0	0	0	0	0	0	0	19
209	Rinorea viridifolia	0	0	0	0	0	0	4	2	0	0	6
210	Rinoreocarpus ulei	0	4	3	1	3	1	0	0	3	4	19
211	Roucheria punctata	1	0	2	0	3	1	2	0	0	0	9
212	Sacoglottis excelsa	0	0	0	0	2	0	0	0	0	0	2
213	Sapium marmieri	0	2	0	0	0	0	0	1	0	0	3
214	Sarcaulus brasiliensis	0	0	0	0	0	0	0	0	1	0	1
215	Schefflera morototoni	0	0	0	0	0	0	0	0	1	5	6
216	Schizolobium parahyba	0	0	1	0	0	0	0	0	1	0	2
217	Senna silvestris	0	0	0	1	0	0	0	0	0	0	1
218	Simarouba amara	0	0	0	1	2	0	0	0	0	0	3
219	Siparuna bifida	0	0	0	3	4	1	2	0	0	0	10
220	Siparuna decipiens	27	16	16	15	19	7	5	18	25	21	169
221	Sloanea eichleri	0	0	2	0	0	0	0	0	0	0	2
222	Sloanea guianensis	0	0	0	0	0	0	0	1	0	0	1

222	Storoulia anatala	^	^	4	4	2	4	0	0	0	^	F
223	Sterculia apetala	0	0	1	1	2	1	0	0	0	0	5
224	Sterculia colombiana	0	0	0	0	0	0	0	3	0	0	3
225	Swartzia arborescens	0	4	0	0	0	1	0	0	0	0	5
226	Symphonia globulifera	0	0	1	2	6	2	9	3	2	2	27
227	Tabernaemontana cymosa	0	2	4	3	1	3	0	3	3	7	26
228	Tachigali amarumayo	0	0	3	0	0	0	0	0	0	15	18
229	Tachigali bracteosa	0	0	0	8	0	0	0	0	0	0	8
230	Tachigali crisaloides	0	0	0	0	0	0	0	0	18	0	18
231	Tachigali poeppigiana	0	0	0	0	0	3	4	12	0	0	19
232	Tachigali vasquezii	4	2	17	17	12	22	13	8	0	0	95
233	Talisia pinnata	0	2	0	0	5	5	4	3	7	0	26
234	Tapirira guianensis	0	1	1	0	0	0	0	0	0	0	2
235	Tapura juruana	0	0	0	0	0	0	2	0	0	0	2
236	Taralea oppositifolia	0	0	0	0	0	0	0	1	0	0	1
237	Teohobroma cacao	0	3	0	0	0	0	0	0	0	0	3
238	Terminalia amazonica	0	0	0	0	0	1	0	1	0	0	2
239	Terminalia oblonga	0	0	2	0	0	0	0	0	0	1	3
240	Tetragastris altissima	52	26	15	14	20	24	28	28	22	25	254
241	Tetragastris panamensis	4	0	0	0	0	0	0	0	1	0	5
242	Theobroma cacao	2	0	0	1	1	0	0	1	0	0	5
243	Theobroma speciosum	0	0	0	0	0	1	0	0	0	0	1
244	Trattinnickia peruviana	0	0	0	0	1	0	0	0	0	0	1
245	Trattinnickia aspera	0	0	0	0	0	0	1	2	0	0	3
246	Trichilia maynesiana	0	0	2	2	5	5	1	4	0	3	22
247	Triplaris americana	0	0	0	0	0	0	0	0	1	0	1
248	Tryginae duckey	0	0	0	0	0	1	0	0	0	0	1
249	Virola calophylla	2	0	7	3	0	3	1	2	5	10	33
250	Virola elongata	0	0	0	0	0	0	0	0	1	5	6
251	Virola flexuosa	0	0	0	0	1	0	0	0	0	0	1
252	Virola multinervia	0	0	0	0	0	0	0	0	0	1	1
253	Virola sebifera	2	3	5	8	4	4	1	2	5	20	54
254	Xylopia sericea	4	10	1	1	0	2	0	1	8	3	30
	Total general	492	380	433	490	381	412	417	425	494	505	4429

P9

P10

Anexo 5. Riqueza Específica e Índices de Diversidad de Especies.

P5

P6

P4

P7

P8

P1

P2

P3

				= =				-		
Taxa_S	77	71	101	105	111	116	94	100	103	105
Individuals	492	380	433	490	381	412	417	425	494	505
Dominance_D	0,03647	0,03213	0,02664	0,02377	0,0223	0,02386	0,02831	0,0307	0,025	0,0235
Simpson_1-D	0,9635	0,9679	0,9734	0,9762	0,9777	0,9761	0,9717	0,9693	0,975	0,9765
Shannon_H	3,779	3,748	4,069	4,12	4,227	4,221	4	4,019	4,071	4,141
Evenness_e^H/S	0,5684	0,5978	0,5789	0,5863	0,6175	0,5871	0,5809	0,5564	0,5692	0,5984
Brillouin	3,536	3,475	3,742	3,814	3,839	3,845	3,683	3,692	3,774	3,838
Menhinick	3,471	3,642	4,854	4,743	5,687	5,715	4,603	4,851	4,634	4,672
Margalef	12,26	11,78	16,47	16,79	18,51	19,1	15,41	16,36	16,44	16,71
Equitability_J	0,8699	0,8793	0,8816	0,8853	0,8976	0,8879	0,8804	0,8727	0,8784	0,8897
Fisher_alpha	25,61	25,75	41,42	40,99	52,64	53,7	37,78	41,23	39,6	40,31
Berger-Parker	0,1057	0,06842	0,07621	0,0551	0,06037	0,06068	0,07674	0,09176	0,05466	0,06139
Chao-1	94,1	94	122,6	148,9	160,3	167,1	129,1	122	155	128,3

Anexo 6. Riqueza Específica e índice de diversidad de Shannon_H y Fisher_alpha para diez parcelas en un bosque de tierra firme.

	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	Promedio
Taxa_S	77	71	101	105	111	116	94	100	103	105	98,3
Individuals	492	380	433	490	381	412	417	425	494	505	442,9
Shannon_H	3,779	3,748	4,069	4.12	4,227	4,221	4	4,019	4,071	4,141	4,04
Fisher_alpha	25,61	25,75	41,42	40.99	52,64	53,7	37,78	41,23	39,6	40,31	39,90

Anexo 7. Composición Florística Total del área de estudio.

N°	FAMILIAS	GÉNEROS	ESPECIES	INDIVIDUOS
1	FABACEAE	24	37	419
2	MORACEAE	11	24	620
3	LAURACEAE	10	17	292
4	MALVACEAE	10	15	101
5	SAPOTACEAE	7	14	152
6	ANNONACEAE	6	8	100
7	EUPHORBIACEAE	6	7	57
8	MELIACEAE	6	7	82
9	APOCYNACEAE	5	7	80
10	BURSERACEAE	5	13	420
11	RUBIACEAE	5	5	73
12	LECYTHIDACEAE	4	5	80
13	SALICACEAE	4	6	67
14	SAPINDACEAE	4	4	33
15	ARECACEAE	3	5	516
16	MYRTACEAE	3	6	29
17	OCHNACEAE	3	3	49
18	OLACACEAE	3	3	37
19	VIOLACEAE	3	4	66
20	ANACARDIACEAE	2	2	10
21	BIGNONIACEAE	2	2	81
22	CARYOCARACEAE	2	3	10
23	CHRYSOBALANACEAE	2	3	23
24	CLUSIACEAE	2	2	28
25	COMBRETACEAE	2	3	9
26	MYRISTICACEAE	2	7	296
27	ULMACEAE	2	2	18
28	URTICACEAE	2	7	202
29	VOCHYSIACEAE	2	3	55
30	POLYGONACEAE	1	1	1

31	ACHARIACEAE	1	1	1
32	ARALIACEAE	1	1	6
33	BORAGINACEAE	1	1	5
34	CELASTRACEAE	1	1	1
35	DICHAPETALACEAE	1	1	2
36	EBENACEAE	1	3	4
37	ELAEOCARPACEAE	1	3	4
38	HUMIRACEAE	1	1	2
39	ICACINACEAE	1	2	17
40	LINACEAE	1	1	9
41	MELASTOMATACEAE	1	2	4
42	MONIMIACEAE	1	1	4
43	NYCTAGINACEAE	1	1	57
44	OPILIACEAE	1	1	6
45	PICRAMNACEAE	1	1	2
46	RHIZOPHORACEAE	1	1	4
47	ROSACEAE	1	1	3
48	RUTACEAE	1	1	15
49	SABIACEAE	1	1	88
50	SIMAROUBACEAE	1	1	3
51	SIPARUNACEAE	1	2	179
52	STAPHYLEACEAE	1	1	2
53	CANNABACEAE	1	2	5
	Total general	165	254	4429

Anexo 8. Comparación de la riqueza de especies de árboles ≥ 10 cm dap en bosque de tierra firme Departamento de Madre de Dios.

Autores	Localidad	Superficie	Altitud	Familia	Género	Especie
Pacheco, et al. 2009	Loboyoc	1 ha	225	40	80	117
	Monte Sinai-					
Luque, et al. 2009	Fitzcarrald	1 ha	230	39	96	141
Cueva, 2014	Fitzcarrald, IIAP	1 ha	228	41	108	150
Pitman, et al. 1999,			250-			
2001	Manu	1 ha	400	43		126-200
Gentry, 1988	Tambopata	1 ha	280	42		155-168
Dueñas, et. al. 2012	Tambopata Inkaterra	1 ha	220	38	84	136
						71-
Carhuarupay, S. 2017	Tambopata, Loboyoc	1 ha	225	53	165	116(98)

Anexo 9. Composición florística familias vs especies para todo el área de estudio

N°	FAMILIAS	ESPECIES
1	FABACEAE	38
2	MORACEAE	24
3	LAURACEAE	17
4	MALVACEAE	15
5	SAPOTACEAE	14
6	BURSERACEAE	13
7	ANNONACEAE	8
8	EUPHORBIACEAE	7
9	MELIACEAE	7
10	APOCYNACEAE	7
11	MYRISTICACEAE	7
12	URTICACEAE	7
13	SALICACEAE	6
14	MYRTACEAE	6
15	RUBIACEAE	5
16	LECYTHIDACEAE	5
17	ARECACEAE	5
18	SAPINDACEAE	4
19	VIOLACEAE	4
20	OCHNACEAE	3
21	OLACACEAE	3
22	CARYOCARACEAE	3
23	CHRYSOBALANACEAE	3
24	COMBRETACEAE	3
25	VOCHYSIACEAE	3
26	EBENACEAE	3
27	ELAEOCARPACEAE	3
28	ANACARDIACEAE	2
29	BIGNONIACEAE	2
30	CLUSIACEAE	2

31	ULMACEAE	2
32	ICACINACEAE	2
33	MELASTOMATACEAE	2
34	SIPARUNACEAE	2
35	POLYGONACEAE	1
36	ACHARIACEAE	1
37	ARALIACEAE	1
38	BORAGINACEAE	1
39	CELASTRACEAE	1
40	DICHAPETALACEAE	1
41	HUMIRACEAE	1
42	LINACEAE	1
43	MONIMIACEAE	1
44	NYCTAGINACEAE	1
45	OPILIACEAE	1
46	PICRAMNACEAE	1
47	RHIZOPHORACEAE	1
48	ROSACEAE	1
49	RUTACEAE	1
50	SABIACEAE	1
51	SIMAROUBACEAE	1
52	STAPHYLEACEAE	1
53	CANNABACEAE	0
	Total general	255

Anexo 10. Composición florística familias vs individuos.

N°	FAMILIAS	INDIVIDUOS
1	MORACEAE	620
2	ARECACEAE	516
3	BURSERACEAE	420
4	FABACEAE	419
5	MYRISTICACEAE	296
6	LAURACEAE	292
7	URTICACEAE	202
8	SIPARUNACEAE	179
9	SAPOTACEAE	152
10	MALVACEAE	101
11	ANNONACEAE	100
12	SABIACEAE	88
13	MELIACEAE	82
14	BIGNONIACEAE	81
15	APOCYNACEAE	80
16	LECYTHIDACEAE	80
17	RUBIACEAE	73
18	SALICACEAE	67
19	VIOLACEAE	66
20	EUPHORBIACEAE	57
21	NYCTAGINACEAE	57
22	VOCHYSIACEAE	55
23	OCHNACEAE	49
24	OLACACEAE	37
25	SAPINDACEAE	33
26	MYRTACEAE	29
27	CLUSIACEAE	28
28	CHRYSOBALANACEAE	23
29	ULMACEAE	18
30	ICACINACEAE	17

31	RUTACEAE	15
32	ANACARDIACEAE	10
33	CARYOCARACEAE	10
34	COMBRETACEAE	9
35	LINACEAE	9
36	ARALIACEAE	6
37	OPILIACEAE	6
38	BORAGINACEAE	5
39	CANNABACEAE	5
40	EBENACEAE	4
41	ELAEOCARPACEAE	4
42	MELASTOMATACEAE	4
43	MONIMIACEAE	4
44	RHIZOPHORACEAE	4
45	ROSACEAE	3
46	SIMAROUBACEAE	3
47	DICHAPETALACEAE	2
48	HUMIRACEAE	2
49	PICRAMNACEAE	2
50	STAPHYLEACEAE	2
51	POLYGONACEAE	1
52	ACHARIACEAE	1
53	CELASTRACEAE	1
	Total general	4429

Anexo 11. Composición florística géneros vs especies para todo el área de estudio.

N°	GÉNEROS	ESPECIES	INDIVIDUOS
1	Inga	7	139
2	Protium	7	150
3	Brosimum	6	181
4	Ocotea	5	170
5	Tachigali	5	158
6	Virola	5	95
7	Guarea	4	45
8	Micropholis	4	33
9	Naucleopsis	4	62
10	Pourouma	4	91
11	Aspidosperma	3	33
12	Casearia	3	31
13	Cecropia	3	111
14	Chrysophyllum	3	43
15	Diospyros	3	4
16	Eugenia	3	17
17	Oenocarpus	3	28
18	Parkia	3	9
19	Pouteria	3	47
20	Pseudolmedia	3	265
21	Sloanea	3	4
22	Theobroma	3	9
23	Nectandra	2	5
24	Alchornea	2	8
25	Aniba	2	29
26	Annona	2	20
27	Calatola	2	17
28	Calyptranthes	2	10
29	Caryocar	2	5

30	Ceiba	2	5
31	Clarisia	2	25
32	Couratari	2	9
33	Ficus	2	11
34	Guatteria	2	39
35	Hymenaea	2	29
36	Iryanthera	2	201
37	Licania	2	16
38	Matisia	2	5
39	Miconia	2	4
40	Nectandra	2	15
41	Perebea	2	7
42	Qualea	2	49
43	Quiina	2	20
44	Rinorea	2	25
45	Siparuna	2	179
46	Sterculia	2	8
47	Terminalia	2	5
48	Tetragastris	2	259
49	Trattinnickia	2	4
50	Abarema	1	4
51	Agonandra	1	6
52	Aiouea	1	2
53	Allophylus	1	4
54	Alseis	1	6
55	Amburana	1	2
56	Ampelocera	1	5
57	Andira	1	2
58	Anthodiscus	1	5
59	Apeiba	1	52
60	Apuleia	1	8
61	Astronium	1	8
62	Bathysa	1	6

63	Batocarpus	1	5
64	Beilschmiedia	1	59
65	Bertholletia	1	17
66	Buchenavia	1	4
67	Cabralea	1	6
68	Calycophyllum	1	18
69	Capirona	1	30
70	Carpotroche	1	1
71	Caryodaphnopsis	1	2
72	Cassipourea	1	4
73	Castilla	1	10
74	Cedrela	1	4
75	Cedrelinga	1	3
76	Celtis	1	18
77	Chaunochiton	1	8
78	Chromolucuma	1	10
79	Conceveiba	1	18
80	Copaifera	1	2
81	Cordia	1	5
82	Couma	1	1
83	Crepidospermum	1	2
84	Cupania	1	2
85	Dacryodes	1	5
86	Dialium	1	18
87	Diplotropis	1	3
88	Dipteryx	1	3
89	Drypetes	1	8
90	Dussia	1	1
91	Ecclinusa	1	2
92	Endlicheria	1	1
93	Enterolobium	1	7
94	Eriotheca	1	5
95	Erisma	1	6

96	Eschweilera	1	50
97	Euterpe	1	251
98	Fusaea	1	3
99	Galipea	1	15
100	Garcinia	1	1
101	Geissospermum	1	14
102	Glycydendron	1	2
103	Gustavia	1	4
104	Handroanthus	1	5
105	Heisteria	1	22
106	Heliantosthylis	1	9
107	Helicostylis	1	27
108	Himatanthus	1	6
109	Hirtella	1	7
110	Huberodendron	1	8
111	Huertea	1	2
112	Iriartea	1	237
113	Ixora	1	13
114	Jacaranda	1	76
115	Lacistema	1	7
116	Laetia	1	28
117	Leonia	1	22
118	Lindackeria	1	1
119	Lonchocarpus	1	2
120	Luehea	1	2
121	Manilkara	1	16
122	Maquira	1	18
123	Matayba	1	1
124	Maytenus	1	1
125	Meliosma	1	88
126	Mezilaurus	1	6
127	Minquartia	1	7
128	Mollinedia	1	4

129	Myroxylon	1	5
130	Neea	1	57
131	Ouratea	1	26
132	Oxandra	1	7
133	Pachira	1	1
134	Pausandra	1	18
135	Picramnia	1	2
136	Pleurothyrium	1	3
137	Poeppigia	1	5
138	Prunus	1	3
139	Pseudopiptadenia	1	1
140	Psidium	1	2
141	Pterocarpus	1	9
142	Pterygota	1	6
143	Rinoreocarpus	1	19
144	Roucheria	1	9
145	Sacoglottis	1	2
146	Sapium	1	3
147	Sarcaulus	1	1
148	Schefflera	1	6
149	Schizolobium	1	2
150	Senna	1	1
151	Simarouba	1	3
152	Swartzia	1	5
153	Symphonia	1	27
154	Tabernaemontana	1	26
155	Talisia	1	26
156	Tapirira	1	2
157	Tapura	1	2
158	Taralea	1	1
159	Trichilia	1	22
160	Triplaris	1	1
161	Tryginae	1	1

	Total general	254	4429
165	Ouratea	0	3
164	Guarea	0	4
163	Cedrela	0	1
162	Xylopia	1	30

Anexo 12. Composición florística géneros vs individuos para todo el área de estudio.

N°	GÉNEROS	INDIVIDUOS
1	Pseudolmedia	265
2	Tetragastris	259
3	Euterpe	251
4	Iriartea	237
5	Iryanthera	201
6	Brosimum	181
7	Siparuna	179
8	Ocotea	170
9	Tachigali	158
10	Protium	150
11	Inga	139
12	Cecropia	111
13	Virola	95
14	Pourouma	91
15	Meliosma	88
16	Jacaranda	76
17	Naucleopsis	62
18	Beilschmiedia	59
19	Neea	57
20	Apeiba	52
21	Eschweilera	50
22	Qualea	49
23	Pouteria	47
24	Guarea	45
25	Chrysophyllum	43
26	Guatteria	39
27	Micropholis	33
28	Aspidosperma	33
29	Casearia	31

30	Capirona	30
31	Xylopia	30
32	Aniba	29
33	Hymenaea	29
34	Oenocarpus	28
35	Laetia	28
36	Helicostylis	27
37	Symphonia	27
38	Ouratea	26
39	Tabernaemontana	26
40	Talisia	26
41	Clarisia	25
42	Rinorea	25
43	Heisteria	22
44	Leonia	22
45	Trichilia	22
46	Annona	20
47	Quiina	20
48	Rinoreocarpus	19
49	Calycophyllum	18
50	Celtis	18
51	Conceveiba	18
52	Dialium	18
53	Maquira	18
54	Pausandra	18
55	Eugenia	17
56	Calatola	17
57	Bertholletia	17
58	Licania	16
59	Manilkara	16
60	Nectandra	15
61	Galipea	15
62	Geissospermum	14

63	Ixora	13
64	Ficus	11
65	Calyptranthes	10
66	Castilla	10
67	Chromolucuma	10
68	Parkia	9
69	Theobroma	9
70	Couratari	9
71	Heliantosthylis	9
72	Pterocarpus	9
73	Roucheria	9
74	Alchornea	8
75	Sterculia	8
76	Apuleia	8
77	Astronium	8
78	Chaunochiton	8
79	Drypetes	8
80	Huberodendron	8
81	Perebea	7
82	Enterolobium	7
83	Hirtella	7
84	Lacistema	7
85	Minquartia	7
86	Oxandra	7
87	Agonandra	6
88	Alseis	6
89	Bathysa	6
90	Cabralea	6
91	Erisma	6
92	Himatanthus	6
93	Mezilaurus	6
94	Pterygota	6
95	Schefflera	6

96	Nectandra	5
97	Caryocar	5
98	Ceiba	5
99	Matisia	5
100	Terminalia	5
101	Ampelocera	5
102	Anthodiscus	5
103	Batocarpus	5
104	Cordia	5
105	Dacryodes	5
106	Eriotheca	5
107	Handroanthus	5
108	Myroxylon	5
109	Poeppigia	5
110	Swartzia	5
111	Diospyros	4
112	Sloanea	4
113	Miconia	4
114	Trattinnickia	4
115	Abarema	4
116	Allophylus	4
117	Buchenavia	4
118	Cassipourea	4
119	Cedrela	4
120	Gustavia	4
121	Mollinedia	4
122	Guarea	4
123	Cedrelinga	3
124	Diplotropis	3
125	Dipteryx	3
126	Fusaea	3
127	Pleurothyrium	3
128	Prunus	3

129	Sapium	3
130	Simarouba	3
131	Ouratea	3
132	Aiouea	2
133	Amburana	2
134	Andira	2
135	Caryodaphnopsis	2
136	Copaifera	2
137	Crepidospermum	2
138	Cupania	2
139	Ecclinusa	2
140	Glycydendron	2
141	Huertea	2
142	Lonchocarpus	2
143	Luehea	2
144	Picramnia	2
145	Psidium	2
146	Sacoglottis	2
147	Schizolobium	2
148	Tapirira	2
149	Tapura	2
150	Carpotroche	1
151	Couma	1
152	Dussia	1
153	Endlicheria	1
154	Garcinia	1
155	Lindackeria	1
156	Matayba	1
157	Maytenus	1
158	Pachira	1
159	Pseudopiptadenia	1
160	Sarcaulus	1
161	Senna	1

	Total general	4429
165	Cedrela	1
164	Tryginae	1
163	Triplaris	1
162	Taralea	1

Anexo 13. Composición florística especies vs individuos para todo el área de estudio.

N°	ESPECIES	INDIVIDUOS
1	Tetragastris altissima	254
2	Euterpe precatoria	251
3	Iriartea deltoidea	237
4	Siparuna decipiens	169
5	Brosimum lactescens	138
6	Pseudolmedia laevis	128
7	Iryanthera laevis	102
8	Iryanthera juruensis	100
9	Cecropia sciadophylla	99
10	Tachigali vasquezii	95
11	Pseudolmedia laevigata	91
12	Meliosma hebertii	88
13	Ocotea bofo	86
14	Jacaranda copaia	76
15	Pourouma minor	67
16	Ocotea aciphylla	65
17	Beilschmiedia tovarensis	59
18	Neea floribunda	57
19	Virola sebifera	54
20	Apeiba membranacea	52
21	Inga auristellae	52
22	Eschweilera coriacea	50
23	Protium sagotianum	49
24	Qualea grandiflora	48
25	Inga alba	47
26	Pseudolmedia macrophylla	45
27	Protium amazonicum	43
28	Protium sagotianum	41
29	Naucleopsis naga	34

30	Pouteria torta	33
31	Virola calophylla	33
32	Guatteria scalarinervia	31
33	Capirona decorticans	30
	Chrysophyllum	
34	venezuelanense	30
35	Guarea gomma	30
36	Xylopia sericea	30
37	Ouratea iquitosensis	29
38	Hymenaea oblongifolia	28
39	Laetia procera	28
40	Aniba peruviana	27
41	Helicostylis tomentosa	27
42	Symphonia globulifera	27
43	Oenocarpus bataua	26
44	Tabernaemontana cymosa	26
45	Talisia pinnata	26
46	Aspidosperma parvifolium	25
47	Inga edulis	25
48	Casearia pitumba	24
49	Heisteria pallida	22
50	Leonia glycycarpa	22
51	Trichilia maynesiana	22
52	Micropholis guyanensis	21
53	Clarisia racemosa	20
54	Quiina amazonica	19
55	Rinorea lindeniana	19
56	Rinoreocarpus ulei	19
57	Tachigali poeppigiana	19
	Calycophyllum	
58	megistocaulum	18
59	Celtis schippii	18
60	Conceveiba guianensis	18

61	Dialium guianense	18
62	Maquira guianensis	18
63	Pausandra trianae	18
64	Tachigali amarumayo	18
65	Tachigali crisaloides	18
66	Bertholletia excelsa	17
67	Pourouma cecropiifolia	17
68	Guarea kunthiana	16
69	Manilkara bidentata	16
70	Galipea trifoliata	15
71	Geissospermum laeve	14
72	Naucleopsis imitans	14
73	Brosimum rubescens	13
74	Ixora peruviana	13
75	Annona pittieri	12
76	Calatola venezuelana	12
77	Eugenia biflora	12
78	Nectandra longifolia	12
79	Brosimum alicastrum	11
80	Cecropia mebranacea	11
81	Brosimum guianense	10
82	Castilla ulei	10
83	Chromolucuma sp	10
84	Chrysophyllum argenteum	10
85	Pouteria bangii	10
86	Siparuna bifida	10
87	Heliantosthylis sprucei	9
88	Licania micrantha	9
89	Naucleopsis krukovii	9
90	Pterocarpus amazonicus	9
91	Roucheria punctata	9
92	Annona ambotay	8
93	Apuleia leiocarpa	8

94	Astronium lecointei	8
95	Brosimum parinarioides	8
96	Chaunochiton keppleri	8
97	Drypetes gentryi	8
98	Guatteria megalophylla	8
99	Huberodendron swietenoides	8
100	Ocotea subrutilans	8
101	Tachigali bracteosa	8
102	Calyptranthes bipennis	7
103	Enterolobium cyclocarpum	7
104	Hirtella triandra	7
105	Lacistema aggregatum	7
106	Licania heteromorpha	7
107	Micropholis egensis	7
108	Minquartia guianensis	7
109	Ocotea longifolia	7
110	Oxandra xylipioides	7
111	Parkia pendula	7
112	Agonandra silvatica	6
113	Alseis peruviana	6
	Aspidosperma	
114	marcgravianum	6
115	Bathysa obovata	6
116	Cabralea canjerana	6
117	Casearia arborea	6
118	Couratari macrosperma	6
119	Erisma incinatum	6
120	Ficus gomelleira	6
121	Himatanthus sucuuba	6
122	Inga heterophylla	6
123	Mezilaurus itauba	6
124	Protium aracouchini	6
125	Protium nodulosum	6

126	Pterygota amazonica	6
127	Rinorea viridifolia	6
128	Schefflera morototoni	6
129	Virola elongata	6
130	Ampelocera edentula	5
131	Anthodiscus peruanus	5
132	Batocarpus amazonicus	5
133	Calatola costaricensis	5
134	Cedrela odorata	5
135	Clarisia biflora	5
136	Cordia toqueve	5
137	Dacryodes peruviana	5
138	Eriotheca globosa	5
139	Ficus pertusa	5
140	Handroanthus serratifolius	5
141	Inga capitata	5
142	Myroxylon balsamum	5
143	Naucleopsis herrerensis	5
144	Perebea angustifolia	5
145	Poeppigia procera	5
146	Pourouma tomentosa	5
147	Sterculia apetala	5
148	Swartzia arborescens	5
149	Tetragastris panamensis	5
150	Theobroma cacao	5
151	Nectandra longifolia	4
152	Abarema jupumba	4
153	Alchornea glandulosa	4
154	Alchornea triplinervia	4
155	Allophylus amazonica	4
156	Buchenavia grandis	4
157	Caryocar glabrum	4
158	Cassipourea peruviana	4

159	Ceiba samauma	4
160	Gustavia longifolia	4
161	Mollinedia killipii	4
162	Ocotea obovata	4
163	Pouteria guianensis	4
164	Calyptranthes densiflora	3
165	Cedrelinga cateniformis	3
166	Chrysophyllum ovale	3
167	Couratari guianensis	3
168	Diplotropis purpurea	3
169	Dipteryx micrantha	3
170	Eugenia eggersii	3
171	Fusaea longifolia	3
172	Matisia malacocalyx	3
173	Micropholis rosae	3
174	Nectandra globosa	3
175	Pleurothyrium krokovii	3
176	Protium paniculatum	3
177	Prunus debilis	3
178	Sapium marmieri	3
179	Simarouba amara	3
180	Sterculia colombiana	3
181	Teohobroma cacao	3
182	Terminalia oblonga	3
183	Trattinnickia aspera	3
184	Guarea gomma	2
185	Micropholis guyanensis	2
186	Aiouea grandiflora	2
187	Amburana cearensis	2
188	Andira suranimensis	2
189	Aniba muca	2
190	Aspidosperma macrocarpon	2
191	Caryodaphnopsis fosteri	2

192	Copaifera paupera	2
	Crepidospermum	
193	goudotianum	2
194	Cupania cinerea	2
195	Diospyros poeppigiana	2
196	Ecclinusa guianensis	2
197	Eugenia egensis	2
198	Glycydendron amazonicum	2
199	Huertea glandulosa	2
200	Inga coruscans	2
201	Inga thibaudiana	2
202	Lonchocarpus heptaphyllus	2
203	Luehea grandiflora	2
204	Matisia bicolor	2
205	Miconia calvescens	2
206	Miconia trinervia	2
207	Perebea guianensis	2
208	Picramnia latifolia	2
209	Pourouma guianensis	2
210	Protium apiculatum	2
211	Psidium sartorianum	2
212	Sacoglottis excelsa	2
213	Schizolobium parahyba	2
214	Sloanea eichleri	2
215	Tapirira guianensis	2
216	Tapura juruana	2
217	Terminalia amazonica	2
218	Hymenaea oblongifolia	1
219	Oenocarpus bataua	1
220	Sloanea guianensis	1
221	Nectandra oblonga	1
222	Brosimum rubescens	1
223	Carpotroche longifolia	1

224	Caryocar amygdaliforme	1	
225	Casearia decandra	1	
226	Cecropia peltata	1	
227	Ceiba pentandra	1	
228	Couma macrocarpa	1	
229	Diospyros artanthifolia	1	
230	Diospyros ebenifolia	1	
231	Dussia tessmannii	1	
232	Endlicheria krukovii	1	
233	Garcinia macrophylla	1	
234	Guarea pubescens	1	
235	Lindackeria paludosa	1	
236	Matayba guianensis	1	
237	Maytenus macrocarpa	1	
238	Oenocarpus mapora	1	
239	Pachira aquatica	1	
240	Parkia multifuga	1	
241	Parkia nitida	1	
	Pseudopiptadenia		
242	suaveolens	1	
243	Qualea tessmannii	1	
244	Quiina florida	1	
245	Sarcaulus brasiliensis	1	
246	Senna silvestris	1	
247	Sloanea guianensis	1	
248	Taralea oppositifolia	1	
249	Theobroma speciosum	1	
250	Trattinnickia peruviana	1	
251	Triplaris americana	1	
252	Tryginae duckey	1	
253	Virola flexuosa	1	
254	Virola multinervia	1	
	Total general	4429	

Anexo 14. Representa la Abundancia Relativa de las 15 especies más abundantes para toda el área de estudio

N°	Especies	Abun Rel
1	Tetragastris altissima	5,73
2	Euterpe precatoria	5,67
3	Iriartea deltoidea	5,35
4	Siparuna decipiens	3,82
5	Brosimum lactescens	3,12
6	Pseudolmedia laevis	2,89
7	Iryanthera laevis	2,30
8	Iryanthera juruensis	2,26
	Cecropia	
9	sciadophylla	2,24
10	Tachigali vasquezii	2,14
	Pseudolmedia	
11	laevigata	2,05
12	Meliosma hebertii	1,99
13	Ocotea bofo	1,94
14	Jacaranda copaia	1,72
15	Pourouma minor	1,51
	Subtotal de 4429	44,73

Anexo 15. Representa la frecuencia relativa de las 15 especies más frecuentes para toda el área de estudio

N°	Especies	Frec Rel
1	Tetragastris altissima	1,02
2	Euterpe precatoria	1,02
3	Iriartea deltoidea	1,02
4	Siparuna decipiens	1,02
5	Pseudolmedia laevis	1,02
6	Cecropia	1,02

	sciadophylla	
7	Jacaranda copaia	1,02
	Beilschmiedia	
8	tovarensis	1,02
9	Virola sebifera	1,02
	Apeiba	
10	membranacea	1,02
	Pseudolmedia	
11	macrophylla	1,02
	Hymenaea	
12	oblongifolia	1,02
	Aspidosperma	
13	parvifolium	1,02
14	Brosimum lactescens	0,92
15	Meliosma hebertii	0,92
	Subtotal de 4429	15,06

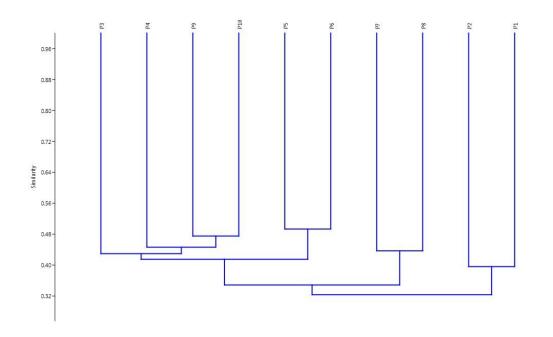
Anexo 16. Representa la Dominancia Relativa de las 15 especies más dominantes para toda el área de estudio.

N°	Especies	Dom Rel				
1	Tetragastris altissima	7,64				
2	Iriartea deltoidea 4,06					
3	Bertholletia excelsa	3,80				
	Pseudolmedia					
4	laevigata	3,07				
5	Jacaranda copaia	2,96				
6	Tachigali vasquezii	2,49				
	Cecropia					
7	sciadophylla	2,48				
	Hymenaea					
8	oblongifolia	2,39				
9	Eschweilera coriacea	2,32				

	Subtotal de 4429	43,43
15	Clarisia racemosa	1,54
14	Brosimum lactescens	1,93
13	Pouteria torta	2,04
12	Pseudolmedia laevis	2,16
11	Euterpe precatoria	2,27
10	Ocotea bofo	2,30

Anexo 17. Representa el IVI al 100% de las de las 15 especies de más óptimo crecimiento para toda el área de estudio

N°	Especies	IVI 100%		
1	Tetragastris altissima	4,80		
2	Iriartea deltoidea	3,48		
3	Euterpe precatoria	2,98		
4	Pseudolmedia laevis	2,02		
5	Brosimum lactescens	1,99		
6	Siparuna decipiens	1,96		
	Pseudolmedia			
7	laevigata	1,95		
	Cecropia			
8	sciadophylla	1,91		
9	Jacaranda copaia	1,90		
10	Tachigali vasquezii	1,82		
11	Ocotea bofo	1,72		
12	Bertholletia excelsa	1,67		
13	Iryanthera laevis	1,49		
14	Eschweilera coriacea	1,45		
	Hymenaea			
15	oblongifolia	1,35		
	Subtotal de 4429	32,47		


Anexo 18. Valores de del Índice de Similaridad y Distancia de Jaccard.

Similarity and Distances Index Jaccard Paired Group (UPGM)

Cophen. Corr. 0,8624

	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10
P1	1									
P2	0,396226	1								
P3	0,280576	0,398374	1							
P4	0,358209	0,313433	0,440559	1						
P5	0,352518	0,263889	0,422819	0,449664	1					
P6	0,321918	0,298611	0,427632	0,435065	0,493421	1				
P7	0,305344	0,299213	0,354167	0,381944	0,339869	0,363636	1			
P8	0,320896	0,285714	0,34	0,348684	0,343949	0,35	0,437037	1		
P9	0,363636	0,279412	0,387755	0,44444	0,380645	0,386076	0,340136	0,309677	1	
P10	0,410853	0,323308	0,460993	0,448276	0,421053	0,398734	0,33557	0,375839	0,475177	1

Anexo 19. Dendrograma de Similitud de Jaccard.

Anexo 20. Matriz de las 15 especies con valores más altos de abundancia relativa para el análisis de componentes principales (PCA)

												Abun	
N°	Especies	P1	P2	Р3	P4	P5	P6	P7	P8	Р9	P10	Abs	Abun Rel
	Tetragastris												
1	altissima	52	26	15	14	20	24	28	28	22	25	254	5,73492888
2	Euterpe precatoria	31	19	33	12	17	23	26	39	20	31	251	5,6671935
3	Iriartea deltoidea	12	23	22	24	23	25	32	33	27	16	237	5,35109506
	Siparuna												
4	decipiens	27	16	16	15	19	7	5	18	25	21	169	3,81575977
	Brosimum												
5	lactescens	3	19	20	25	13	10	0	14	9	25	138	3,1158275
	Pseudolmedia												
6	laevis	14	18	10	17	7	4	11	10	20	17	128	2,8900429
7	Iryanthera laevis	41	14	8	4	3	6	0	1	25	0	102	2,30300294
	Iryanthera												
8	juruensis	0	0	7	26	9	12	18	13	10	5	100	2,25784601
	Cecropia												
9	sciadophylla	16	8	7	8	13	22	11	7	6	1	99	2,23526755
10	Tachigali vasquezii	4	2	17	17	12	22	13	8	0	0	95	2,14495371
	Pseudolmedia												
11	laevigata	0	0	22	13	8	7	17	8	0	16	91	2,05463987
12	Meliosma hebertii	14	1	0	9	4	5	8	11	21	15	88	1,98690449
13	Ocotea bofo	6	16	5	11	15	8	0	7	9	9	86	1,94174757
14	Jacaranda copaia	7	18	5	10	2	8	10	2	6	8	76	1,71596297
15	Pourouma minor	3	0	6	8	9	2	8	8	14	9	67	1,51275683

Anexo 21. Matriz de las 15 especies con valores transformados en porcentajes de abundancia relativa para el Análisis de Componentes Principales (PCA)

N°	Especies	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10
	Tetragastris										
1	altissima	20,47	10,24	5,91	5,51	7,87	9,45	11,02	11,02	8,66	9,84
	Euterpe										
2	precatoria	12,35	7,57	13,15	4,78	6,77	9,16	10,36	15,54	7,97	12,35
3	Iriartea deltoidea	5,06	9,70	9,28	10,13	9,70	10,55	13,50	13,92	11,39	6,75
	Siparuna										
4	decipiens	15,98	9,47	9,47	8,88	11,24	4,14	2,96	10,65	14,79	12,43
	Brosimum										
5	lactescens	2,17	13,77	14,49	18,12	9,42	7,25	0,00	10,14	6,52	18,12
	Pseudolmedia										
6	laevis	10,94	14,06	7,81	13,28	5,47	3,13	8,59	7,81	15,63	13,28
7	Iryanthera laevis	40,20	13,73	7,84	3,92	2,94	5,88	0,00	0,98	24,51	0,00
	Iryanthera										
8	juruensis	0,00	0,00	7,00	26,00	9,00	12,00	18,00	13,00	10,00	5,00
	Cecropia										
9	sciadophylla	16,16	8,08	7,07	8,08	13,13	22,22	11,11	7,07	6,06	1,01
	Tachigali										
10	vasquezii	4,21	2,11	17,89	17,89	12,63	23,16	13,68	8,42	0,00	0,00
	Pseudolmedia										
11	laevigata	0,00	0,00	24,18	14,29	8,79	7,69	18,68	8,79	0,00	17,58
12	Meliosma hebertii	15,91	1,14	0,00	10,23	4,55	5,68	9,09	12,50	23,86	17,05
13	Ocotea bofo	6,98	18,60	5,81	12,79	17,44	9,30	0,00	8,14	10,47	10,47
14	Jacaranda copaia	9,21	23,68	6,58	13,16	2,63	10,53	13,16	2,63	7,89	10,53
15	Pourouma minor	4,48	0,00	8,96	11,94	13,43	2,99	11,94	11,94	20,90	13,43

Anexo 22. Cuadro resumen de los Componentes Principales y valores de Varianza de PCA

Summary

		%
PC	Eigenvalue	variancia
1	190,76	44,764
2	79,7834	18,722
3	59,7876	14,03
4	35,67	8,3703
5	25,2407	5,923
6	18,9743	4,4525
7	7,90102	1,8541
8	5,08617	1,1935
9	2,94433	0,69092
10	5,2629	1,2429

REGISTRO FOTOGRAFICO

Fig.1. Identificando las especies

Fig.2. Tomando datos de diámetro

Fig. 3. Tomando datos del área basal y altura

Fig.4. Estableciendo las parcelas de estudio.

Fig.5. Realizando el marcado para su identificación

Fig.6. Tomando datos de coordenadas.

Fig. 7. Arbol de Shihuahuaco dentro de la parcela