UNIVERSIDAD NACIONAL AMAZONICA DE MADRE DE DIOS

FACULTAD DE INGENIERIA ESCUELA PROFESIONAL DE INGENIERIA FORESTAL Y MEDIO AMBIENTE

TESIS

"Modelado de atributos forestales y cubierta terrestre con datos GEDI e imágenes sentinel en una plantación forestal de la

Amazonia de Madre de Dios"

PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO FORESTAL Y MEDIO AMBIENTE AUTORES:

Bach. GONZALES TANGOA, Amner Hilberto

Bach. PALOMINO PRADO, Kevin Joel

ASESOR:

Dr. ALARCÓN AGUIRRE, Gabriel

UNIVERSIDAD NACIONAL AMAZONICA DE MADRE DE DIOS

FACULTAD DE INGENIERIA ESCUELA PROFESIONAL DE INGENIERIA FORESTAL Y MEDIO AMBIENTE

TESIS

"Modelado de atributos forestales y cubierta terrestre con datos GEDI e imágenes sentinel en una plantación forestal de la

Amazonia de Madre de Dios"

PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO FORESTAL Y MEDIO AMBIENTE AUTORES:

Bach. GONZALES TANGOA, Amner Hilberto

Bach. PALOMINO PRADO, Kevin Joel **ASESOR:**

Dr. ALARCÓN AGUIRRE, Gabriel

DEDICATORIA

La presente tesis está dedicada a Dios, quien ha sido mi guía y fortaleza a lo largo de este camino académico. Gracias a Él, he logrado concluir mi carrera y alcanzar esta meta tan importante en mi vida.

A mis queridos padres, les dedico este trabajo con profundo amor y gratitud. Siempre estuvieron a mi lado, brindándome su apoyo incondicional y su aliento para convertirme en una mejor persona.

A mi esposa e hija, quiero expresar mi más sincero agradecimiento por su confianza, su amor inquebrantable y por brindarme el tiempo y espacio necesario para crecer profesionalmente. Su apoyo ha sido fundamental en este proceso.

A mis hermanos y amigos, les dedico un reconocimiento especial. Su presencia y ánimo han sido pilares importantes en la consecución de mis objetivos. A cada uno de ustedes, les agradezco por contribuir de alguna manera a mi desarrollo académico y personal.

Que esta tesis sea un testimonio de mi gratitud hacia todos aquellos que han formado parte de este viaje. Su apoyo y afecto han sido invaluables en mi camino hacia el éxito.

Amner Hilberto

A mis padres, con todo mi corazón, dedico esta tesis, ya que, sin su apoyo y dedicación para conmigo no podría haber llegado a realizar y cumplir mis objetivos de vida. El esfuerzo diario, sus consejos, su apoyo a lo largo de mi vida me protegen y me dirigen hacia el camino del bien. Por eso, y muchas cosas más es que doy este trabajo como regalo de su paciencia y amor incondicional.

A mis hermanos, dedico un reconocimiento especial por los ánimos, su compañía y su apoyo en momentos claves para seguir adelante en este proceso. A mi pareja, por motivarme, ayudarme y acompañarme en todo momento.

Kevin Joel

AGRADECIMIENTOS

En primer lugar, quiero expresar mi más profundo agradecimiento a Dios por darme vida y salud. En esta etapa de mi camino, he enfrentado diversos obstáculos, pero siempre he perseverado en la búsqueda de mis metas y sueños.

En segundo lugar, quiero agradecer a mi amada esposa por su incondicional apoyo y compañía durante aquellas largas jornadas de estudio. Su presencia ha sido un faro de luz en los momentos más desafiantes.

Y, sobre todo, quiero dedicar un eterno agradecimiento a mis padres, Hilberto Gonzales Burga y Elsa Tangoa Da Silva. Gracias a sus enseñanzas, apoyo incondicional y fe en mí, soy quien soy hoy. Su amor y sabiduría han sido el cimiento de mi vida, guiándome en cada paso que he dado.

A todos ellos, les debo mi más profundo respeto y gratitud. Sin su presencia y apoyo, nada de lo que he logrado sería posible. Que este reconocimiento sea un testimonio de mi amor y agradecimiento eterno hacia ellos.

Amner Hilberto

Agradecer a mis padres Angelina Prado Neyra y Daniel Alpaca Campos, agradecer su apoyo, enseñanzas y tenerme paciencia, gracias por su formación y poder ser la persona de bien que soy hoy por hoy, gracias a mis hermanos y familiares que me apoyaron sin dudarlo. Agradecer a mi pareja por su apoyo incondicional y compañía que estaba presente durante las horas de estudio y trabajos de campo, gracias por su presencia que me ayudaron a afrontar cada reto que se presentaba a diario.

Y agradecerme por creer en mí, agradecerme por no tener fines de semana libre, por nunca renunciar, por hacer el bien, por siempre dar lo mejor de mí, por tratar de dar más de mí, agradecerme por hacer que esto sea posible.

A cada una de las personas presentes, mis respetos y gratitud.

Kevin Joel

TURNITIN_AMNER GONZALES Y KEVIN PALOMINO

INFORME DE ORIGINALIDAD

17%
INDICE DE SIMILITUD

16%

FUENTES DE INTERNET

6%

PUBLICACIONES

6%

TRABAJOS DEL ESTUDIANTE

FUENT	ES PRIMARIAS	
1	repositorio.unamad.edu.pe Fuente de Internet	2%
2	rediab.uanl.mx Fuente de Internet	1 %
3	repositorio.espe.edu.ec Fuente de Internet	1 %
4	hdl.handle.net Fuente de Internet	1 %
5	Li, Xiaoxuan. "Space-Based LiDAR for Estimating Vegetation Structure", George Mason University, 2024 Publicación	1 %
6	imasgal.com Fuente de Internet	1 %
7	www.geoforpy.eoc.dlr.de Fuente de Internet	1 %
8	www.mdpi.com Fuente de Internet	1 %

RESUMEN

La estructura de la vegetación es un componente clave en la evaluación de la calidad del hábitat para la vida silvestre y la capacidad de almacenamiento de carbono de los bosques. La Amazonia es considerada como una de las regiones con mayor tasa de deforestación en el mundo. El presente estudio se centra en la evaluación de las características de la estructura de la vegetación en una plantación de Tectona grandis para 2022 mediante la fusión de Sentinel-1, -2, STRM y nuevas muestras espaciales de Detección y alcance de luz (LiDAR) de la Investigación de dinámica de ecosistemas globales (GEDI L2A y L4B). El procesamiento se aplicó en el flujo de trabajo en el entorno de computación en la nube de Google Earth Engine (GEE) que procesa de manera eficiente los conjuntos de datos multitemporales y multisensor para su extrapolación en un bosque aleatorio (RF). Por lo tanto, la combinación de misiones cartográficas globales, como Sentinel, están predestinadas a combinarse con datos GEDI, con el fin de identificar áreas prioritarias para la conservación de la naturaleza. El área de la plantación puede describirse mediante valores de altura del dosel de 8,89 a 25,06 m con mejor respuesta a un percentil de rh95. La precisión del modelo según la mediana R² asciende a 69,40%. Para la densidad de biomasa presento un R² con 52,00% con fluctuaciones considerables respecto a la media y total de la densidad de biomasa estimada en campo. Respecto a la cobertura del suelo cuantifico a zonas arboladas de densidad alta con 61,80% del área de la plantación.

Palabras clave: Fusión de imágenes, Random Forest, cobertura del dosel, densidad de biomasa.

ABSTRACT

Vegetation structure is a key component in assessing the quality of wildlife habitat and the carbon storage capacity of forests. The Amazon is considered one of the regions with the highest rate of deforestation in the world. The present study focuses on the assessment of vegetation structure characteristics in a Tectona grandis plantation by 2022 by fusing Sentinel-1, -2, STRM and new spatial Light Detection and Ranging (LiDAR) samples from the Global Ecosystem Dynamics Investigation (GEDI L2A and L4B). The processing was applied in the workflow in the Google Earth Engine (GEE) cloud computing environment that efficiently processes multi-temporal and multi-sensor datasets for extrapolation into a random forest (RF). Therefore, the combination of global mapping missions, such as Sentinel, are predestined to be combined with GEDI data, in order to identify priority areas for nature conservation. The plantation area can be described by canopy height values from 8.89 to 25.06 m with best response to a percentile of rh95. The accuracy of the model according to the median R² amounts to 69.40%. For biomass density, it presented an R² with 52.00% with considerable fluctuations with respect to the mean and total biomass density estimated in the field. Regarding the ground cover, it quantifies high density wooded areas with 61.80% of the plantation area.

Key words: Image fusion, Random Forest, canopy cover, biomass density.

INTRODUCCIÓN

La Amazonia es conocido como "el paisaje contiguo más grande del mundo" (García-Quintana et al. 2020; Londres et al. 2023; Zuquim et al. 2023). La Amazonia con 7,4 millones de km² representa el 4,9% del área continental mundial (Londres et al. 2023). La biosfera terrestre representa un componente importante, pero también incierto del ciclo global del carbono (Le Quéré et al. 2016; Rödig et al. 2018). Asimismo representa el 50 % del carbono almacenado en los bosques tropicales (Pan et al. 2011), esta estimación esta simulada en alrededor (Rödig et al. 2018) . Por otro lado, el 70% del PBI de América del Sur se produce en áreas que reciben lluvia o agua de la Amazonía, a nivel de actividades productivas, la ganadería representa aproximadamente el 70% de la deforestación en la Amazonía (Rödig et al. 2018).

La dinámica de los árboles en la Amazonia es compleja, bajo la influencia de precipitaciones muy variables, perturbaciones importantes como los incendios, y cambios drásticos del paisaje por actividades antrópicas (García-Quintana et al. 2020; Londres et al. 2023; Zuquim et al. 2023). Las actividades humanas alteran directamente los componentes leñosos a través de la deforestación y la degradación (Alarcón et al. 2016; Caballero et al. 2018; Alarcon et al. 2020; Alarcón-Aguirre et al. 2023). Los datos espaciales sobre la estructura de la vegetación leñosa, específicamente la altura del dosel, son por lo tanto esenciales para comprender y manejar los bosques de la Amazonia para una amplia variedad de usos de la tierra (Silva et al. 2019a; Silva et al. 2019b; Ngo et al. 2023).

La distribución espacial de los tipos de vegetación es información esencial para abordar la crisis climática global y la pérdida de biodiversidad (Silva et al. 2019a; Silva et al. 2019b). Por ejemplo, los mapas forestales son útiles para diseñar y monitorear los bosques (Silva et al. 2019a; Silva et al. 2019b; Zhang et al. 2022; Rajab Pourrahmati et al. 2023). Si embargo, el potencial de estos tipos de vegetación gestionada aún no se ha investigado ni cartografiado tan exhaustivamente como el de los bosques (Adrah et al. 2021; Di Tommaso et al. 2021; Lahssini et al. 2022; Geremew et al. 2023; Rajab Pourrahmati et al.

2023). Esta tendencia se anticipó ya que los bosques han sido los tipos de vegetación más representados en mapas y estudios de cobertura terrestre (Dwiputra et al. 2023). Mejorar nuestra capacidad para mapear tipos de vegetación más allá de la dicotomía forestal y no forestal puede ayudar a expandir la gestión fuera de los bosques (Dwiputra et al. 2023).

El enfoque más común para mapear los tipos de vegetación, que se define como las clases de cobertura terrestre dominadas por la vegetación que incluyen las naturales y las plantadas, es mediante la clasificación de imágenes satelitales adquiridas con sensores ópticos (Zhu et al. 2019; Booysen et al. 2021) y de radar (Elias et al. 2020; Huang et al. 2020). Sin embargo, los tipos de vegetación que son espectralmente similares, pero estructuralmente diferentes en paisajes heterogéneos a menudo se confunden (Reiche et al. 2018; Steinhausen et al. 2018; Zhu et al. 2019). Estos tipos de vegetación a menudo comprenden diferentes comunidades de vegetación dominada por árboles con un significado ecológico y económico único, lo que hace que la capacidad de distinguirlos correctamente y sea importante en la gestión eficaz del paisaje (García-Quintana et al. 2020; Londres et al. 2023; Zuquim et al. 2023). Sin embargo, distinguir diferentes bosques naturales y plantaciones de árboles puede ser un desafío, si es posible, solo con información espectral (Alarcon-Aguirre et al. 2022).

La información estructural de la vegetación (altura del dosel, estructura del dosel y otros perfiles de vegetación vertical) se ha utilizado para mejorar la identificación de tipos de vegetación en paisajes complejos y dinámicos (Di Tommaso et al. 2021; Dubayah et al. 2022; Leite et al. 2022; Dwiputra et al. 2023; Li et al. 2023). Por ejemplo, algunos estudios demuestran que; agregar datos de radar con datos ópticos aumentó la precisión de la clasificación del mapeo de la cobertura terrestre aproximadamente entre 2-10 % en relación con el resultado de la clasificación solo óptica (Steinhausen et al. 2018; Huang et al. 2020; Booysen et al. 2021; Huamani et al. 2021; Puzzi et al. 2021). Más recientemente, la combinación de datos de radar con datos ópticos arrojó precisiones de clasificación satisfactorias (Novresiandi et al. 2023). Sin embargo, los datos de radar son sensibles a varios factores, como el

contenido de humedad, además de la estructura de la vegetación per se, es decir, la biomasa y la posición/orientación 3D del objeto (Alarcon-Aguirre et al. 2022).

Los sensores Lidar (detección y rango de luz) interactúan directamente con la estructura de la vegetación, lo que los hace muy útiles en el mapeo de la vegetación, ya sea solos (Dubayah et al. 2020; Duncanson et al. 2020) o en combinación con otros datos de detección remota (Di Tommaso et al. 2021). Dado que la mayoría de los datos LIDAR hasta la fecha se recopilaron mediante escaneo láser aéreo (Dubayah et al. 2020; Dubayah et al. 2022), es difícil obtener información estructural a gran escala de manera estandarizada. A fines de 2018, la NASA lanzó la misión de investigación de la dinámica del ecosistema global (GEDI) para recopilar datos de la estructura de la vegetación en áreas terrestres entre 51 y -51 grados de latitud utilizando lidar de forma de onda completa. Mientras que estudios recientes han explorado el potencial de los datos GEDI de Nivel 1, 2, 3 y 4 (Silva et al. 2019a; Silva et al. 2019b; Di Tommaso et al. 2021). Por lo tanto, el conocimiento de su potencial aun es escaso, a pesar de la duración limitada de la misión, las "instantáneas" derivadas de los datos GEDI pueden reducir la incertidumbre en el potencial de conocer el bosque, especialmente en entornos con escasez de datos (Potapov et al. 2021; Schlund et al. 2022; Kacic et al. 2023; Torresani et al. 2023; Zhou et al. 2023).

Este estudio exploró la utilización de datos de forma de onda GEDI 2A y 4B combinados con Sentinel-1, -2 y modelo de elevación digital para la estimación de la altura del dosel, biomasa y cobertura terrestre en una plantación de *Tectona grandis* L. en la Amazonia de Madre de Dios, donde están presentes individuos de diferentes edades.

ÍNDICE

DEDICATORIA	IV
AGRADECIMIENTOS	VI
RESUMEN	VIII
ABSTRACT	IX
INTRODUCCIÓN	X
ÍNDICE	XIII
ÍNDICE DE TABLAS	XVI
ÍNDICE DE FIGURAS	XVII
CAPÍTULO I: PROBLEMA DE INVESTIGACIÓN	1
1.1 Descripción del problema	1
1.2 Formulación del problema	3
1.2.1 Problema general	3
1.2.2 Problemas específicos	3
1.3 Objetivos de la investigación	4
1.3.1 Objetivo general	4
1.3.2 Objetivos específicos	4
1.4 Variables de la investigación	5
1.4.1 Identificación de variables	5
1.5 Operacionalización de variables	6
1.6 Hipótesis	7
1.7 Justificación e importancia	7
1.8 Consideraciones éticas	8
CAPÍTULO II: MARCO TEÓRICO	9
2.1 Antecedentes de la investigación	9
2.2 Base teórica	11
2.2.1 Bosque	11
2.2.2 Altura de dosel	11
2.2.3 Densidad de biomasa aérea	12
2.2.4 Principios básicos de la teledetección	12
2.2.5 Sensores	13
2.2.6 Programa Copérnico	13
2.2.7 Dinámica de Ecosistemas Globales (GEDI)	14

2.2.	8 Modelo de elevación digital	16
2.2.	9 Cobertura de suelo	16
2.2.	10 Google Earth Engine (GEE)	16
2.2.	11 Random Forest	17
2.3	Definición de términos	17
CAF	PÍTULO III: METODOLOGÍA DE INVESTIGACIÓN	18
3.1	Tipo de estudio	18
3.2	Diseño del estudio	18
3.3	Delimitación espacial y temporal	18
3.4	Población y muestra	19
3.5	Método y técnicas	20
3.6	Tratamiento de datos	22
3.6.	1 Procesamiento de datos	22
3.6.	2 Precisión de datos	26
3.6.	4 Análisis estadístico	27
CAF	PÍTULO IV: RESULTADOS Y DISCUSIÓN	29
4.1	Métricas de datos GEDI 2A en una plantación de Tectona grandis L	29
4.1.	1 Tipo de haz de GEDI nivel 2A respecto a valores de referencia de cam	ро
en la	a estimación de las alturas del dosel	29
4.1.	2 Altura del dosel con datos GEDI nivel 2A	33
4.1.	3 Modelo de la altura del dosel basado en Random Forest de	la
com	binación de datos GEDI nivel 2A con Sentinel-1, -2 y elevación digital	34
4.2	Métricas de datos GEDI 4B en una plantación de Tectona grandis L	39
4.2.	1 Densidad de biomasa con datos GEDI nivel 4B	41
4.2.	2 Modelo de la densidad de biomasa basado en Random Forest de	la
com	ibinación de datos GEDI nivel 4B con Sentinel-1, -2 y modelo de elevaci	ón
digit	tal	42
4.3	Cobertura de suelo en una plantación de Tectona grandis L. basado	en
Ran	dom Forest mediante la combinación de datos GEDI nivel 2A, Sentine	I-1
y Se	entinel-2	47
COI	NCLUSIONES	48
SUC	GERENCIAS	50
RFF	FERENCIAS BIBLIOGRÁFICAS	51

ANEXOS67
ANEXO 1. MATRIZ DE CONSISTENCIA
ANEXO 2. MÉTRICAS DE ALTURA DE DOSEL GEDI L2A Y DATOS DE
CAMPO EN LA PLANTACIÓN DE TECTONA GRADIS
ANEXO 3. MÉTRICAS DE DENSIDAD DE BIOMASA Y AGBD GEDI L4B Y
DATOS DE CAMPO EN LA PLANTACIÓN DE TECTONA GRADIS
ANEXO 4. PANEL FOTOGRÁFICO

ÍNDICE DE TABLAS

Tabla 1. Operacionalización de variables6
Tabla 2. altimetría láser recibidas por el instrumento GEDI15
Tabla 3. Datos de adquisición de imágenes Sentinel y GEDI24
Tabla 4. Comparación entre la distribución de altura del dosel (campo) y las
métricas de altura relativa (rh) de GEDI en términos de r, R2, RMSE,
rRMSE, Bias y rBias29
Tabla 5. Estadística descriptiva de la distribución de altura del dosel por nivel
de altura relativa (rh) de GEDI (m)
Tabla 6. Densidad de biomasa de la plantación (AGBD) de GEDI en términos
de r, R2, RMSE, rRMSE, Bias y rBias39
Tabla 7. Estadística descriptiva de la distribución de la densidad de biomasa
(AGBD) de GEDI42

ÍNDICE DE FIGURAS

Figura 1. Ubicación del área de estudio, Madre de Dios – Perú
Figura 2. Ubicación de huellas de muestreo, 2A a la izquierda y 4B a la derecha
Figura 3. Regresión de Random Forest (RF)
Figura 5. Diagramas de dispersión entre las métricas derivadas de datos de campo y GEDI para rh0, rh25, rh50, rh75, rh80, rh85, rh90 y rh90 31
Figura 6. Diagramas de dispersión entre las métricas derivadas de datos de campo y GEDI para rh98 y rh100
Figura 7. Importancia de variables en la generación del modelo de la altura del dosel
Figura 8. Datos de entrenamiento de la predicción versus datos observados.
Figura 9. Datos de prueba de la predicción versus datos observados 36
Figura 10. Modelo de la altura del dosel basado en Random Forest de la combinación de datos GEDI nivel 2A con Sentinel-1, -2 y elevación digital.
Figura 11. Importancia de variables en la generación del modelo de AGBD.
Figura 12. Datos de entrenamiento de la predicción versus datos obeservados
Figura 13. Modelo de la densidad de biomasa basado en Random Forest de
la combinación de datos GEDI nivel 4B con Sentinel-1, -2 y modelo de
elevación digital44
Figura 14. Datos de validación de la predicción versus datos observados 45
Figura 15. Cobertura de suelo en una plantación de Tectona grandis L. basado en Random Forest mediante la combinación de datos GEDI nivel 2A,
Sentinel-1 y Sentinel-247

CAPÍTULO I: PROBLEMA DE INVESTIGACIÓN

1.1 Descripción del problema

La estructura tridimensional de la vegetación se define como la configuración vertical de la vegetación aérea y sus variaciones horizontales, desde la hoja hasta la escala del paisaje (Brokaw 1999; Li et al. 2023), que incluyen la altura de los árboles y el dosel, la cubierta del dosel, el perfil de densidad del área foliar y el diámetro del tallo. Los bosques de la Amazonia son ecosistemas complejos y estructuralmente diversos, en términos de proporciones variables y distribuciones espaciales de árboles, arbustos y pastos, así como de arquitecturas de árboles y arbustos en diferentes etapas de crecimiento (Pan et al. 2011; Le Quéré et al. 2016; Rödig et al. 2018; García-Quintana et al. 2020; Londres et al. 2023; Zuquim et al. 2023), 1997). La mayoría de las especies arbóreas se caracterizan por su gran tamaño y frondosidad (Londres et al. 2023). La estructura de la vegetación leñosa se ha medido predominantemente con datos Lidar Airbone Laser Scanner (ALS) de retorno discreto, que proporcionan datos detallados sobre las proporciones de las copas leñosas a varias alturas (Silva et al. 2019a; Silva et al. 2019b) la estructura del sotobosque (Silva et al. 2019a; Silva et al. 2019b; Torresani et al. 2023) Fisher et al., 2015; Mograbi et al., 2015) y sus cambios a través del tiempo Si bien los datos de ALS brindan información detallada que es adecuada para caracterizar la estructura a escala local del paisaje (Silva et al. 2019a; Silva et al. 2019b), es costoso y se repite con poca frecuencia para proporciona información sobre cambios y, a menudo, tiene una cobertura aérea muy limitada, lo que impide el seguimiento regional de la estructura de la vegetación. Los sensores LiDAR basados en el espacio, como GEDI, pueden abordar esta brecha de observación al proporcionar una cobertura casi global y observaciones frecuentes de las estructuras verticales de la

cuenca Amazónica, en particular, la altura de la vegetación leñosa. El objetivo general de la misión GEDI es caracterizar la estructura del ecosistema y su cambio debido al clima y al uso de la tierra (Ngo et al. 2023). El instrumento GEDI es un altímetro láser de clase geodésica y LiDAR de forma de onda con una huella de 25 m que está optimizado para mediciones de estructura vertical a bordo de la Estación Espacial Internacional, las mediciones de GEDI tienen una cobertura casi global (dentro de 51,6° N y S), que ha muestreado el 4% de la superficie terrestre de la Tierra durante la misión inicial de dos años. GEDI proporciona conjuntos de datos críticos de métricas estructurales leñosas, incluida la altura del dosel, la cobertura del dosel, el índice de área de la planta y los perfiles de follaje vertical, la topografía, así como la biomasa aérea a nivel de huella y cuadriculada (Duncanson et al. 2020; Healey et al. 2020; Adrah et al. 2021; Di Tommaso et al. 2021; Potapov et al. 2021; Leite et al. 2022). El instrumento GEDI fue diseñado para medir perfiles verticales de dosel en condiciones de hasta un 95 % y un 98 % de cobertura de dosel para los haces de cobertura y potencia, respectivamente (Dubayah et al. 2020; Dubayah et al. 2022). La longitud del pulso de GEDI (FWHM 15,6 ns) es lo suficientemente corta como para discriminar verticalmente los retornos del dosel y del suelo en los ecosistemas boscosos, sin embargo, la capacidad de caracterizar la vegetación discontinua de baja estatura no ha sido un requisito de diseño para GEDI y, por lo tanto, debe evaluarse antes de aplicarlo a los estudios ecológicos regionales (Dubayah et al. 2020; Dubayah et al. 2022). Si bien el diseño del instrumento GEDI, la calibración del algoritmo y la validación se centraron en la medición de bosques tropicales y templados altos y densos, se anticipa que también podría proporcionar una caracterización útil y precisa de bosque tropical Amazónica continua y discontinua con diferentes estratos de la vegetación (Corte et al. 2022; Duncanson et al. 2022; Dwiputra et al. 2023; Hoffrén et al. 2023; Li et al. 2023).

Las métricas de altura relativa (RH) derivadas de los sistemas LiDAR de forma de onda completa, como GEDI, se consideran "métricas percibidas de LiDAR" que estiman la altura a la que se alcanza un cuantil particular de energía devuelta en relación con la elevación del modo de forma de onda más bajo,

es decir, a nivel del suelo (Hofton et al. 2020; Hoffrén et al. 2023). La investigación probara RHs, que representen el mejor cuantil de la distribución de energía devuelta, que represente la parte superior del dosel, o la vegetación casi más alta en la huella, con menos valores atípicos y sensibilidad al ruido (Hoffrén et al. 2023). Sin embargo, debe considerarse que RH98 es una de las variables más importantes que se utilizan para estimar la altura y la biomasa con LiDAR de forma de onda y GEDI en particular y, por lo tanto, la precisión y el sesgo del RH98 en órbita deben evaluarse y validarse (Duncanson et al. 2020; Duncanson et al. 2022).

1.2 Formulación del problema

1.2.1 Problema general

¿Como será la influencia de parámetros de adquisición y procesamiento de señales en la estimación de la altura del dosel, densidad de biomasa y cobertura terrestre en una plantación de *Tectona grandis* L. mediante la combinación de GEDI con Sentinel (-1 y -2) y modelo de elevación digital en la Amazonia de Madre de Dios en el año 2022?

1.2.2 Problemas específicos

- P.E.1 ¿Cuál será el tipo de haz de GEDI nivel 2A respecto a valores de referencia de campo en la configuración de láser más adecuada para la estimación de las alturas del dosel en una plantación de *Tectona* grandis L. en la Amazonia de Madre de Dios en el año 2022?
- P.E.2 ¿Cuál será la altura del dosel con datos GEDI nivel 2A en una plantación de *Tectona grandis* L. en la Amazonia de Madre de Dios en el año 2022?
- P.E.3 ¿Cuánto será la altura del dosel y cuál será el modelo basado en Random Forest de la combinación de datos GEDI nivel 2A con Sentinel-1, -2 y modelo de elevación digital una plantación de *Tectona grandis* L. en la Amazonia de Madre de Dios en el año 2022?

- P.E.4 ¿Cuánto será la densidad de biomasa con datos GEDI nivel 4B en una plantación de *Tectona grandis* L. en la Amazonia de Madre de Dios en el año 2022?
- P.E.5 ¿Cuánto será la densidad de biomasa y cuál será el modelo basado en Random Forest de la combinación de datos GEDI nivel 4B con Sentinel-1, -2 y modelo de elevación digital en una plantación de *Tectona grandis*L. en la Amazonia de Madre de Dios en el año 2022?
- P.E.6 ¿Como será la clasificación de la cobertura de suelo en una plantación de *Tectona grandis* L. mediante un modelo de regresión basado en Random Forest de la combinación de datos GEDI nivel 2A, Sentinel-1 y Sentinel-2 en la Amazonia de Madre de Dios en el año 2022?

1.3 Objetivos de la investigación

1.3.1 Objetivo general

Evaluar la influencia de parámetros de adquisición y procesamiento de señales en la estimación de la altura del dosel, densidad de biomasa y cobertura terrestre en una plantación de *Tectona grandis* L. mediante la combinación de GEDI con Sentinel (-1 y -2) y modelo de elevación digital en la Amazonia de Madre de Dios en el año 2022.

1.3.2 Objetivos específicos

- O.E.1 Evaluar el tipo de haz de GEDI nivel 2A respecto a valores de referencia de campo en la configuración de láser más adecuada para la estimación de las alturas del dosel en una plantación de *Tectona grandis* L. en la Amazonia de Madre de Dios en el año 2022.
- O.E.2 Estimar la altura del dosel con datos GEDI nivel 2A en una plantación de *Tectona grandis* L. en la Amazonia de Madre de Dios en el año 2022.
- O.E.3 Determinar la altura del dosel y el modelo basado en Random Forest de la combinación de datos GEDI nivel 2A con Sentinel-1, -2 y elevación digital en una plantación de *Tectona grandis* L. en la Amazonia de Madre de Dios en el año 2022.

- O.E.4 Cuantificar la densidad de biomasa con datos GEDI nivel 4B en una plantación de *Tectona grandis* L. en la Amazonia de Madre de Dios en el año 2022.
- O.E.5 Determinar la densidad de biomasa y el modelo basado en Random Forest de la combinación de datos GEDI nivel 4B con Sentinel-1, -2 y modelo de elevación digital en una plantación de *Tectona grandis* L. en la Amazonia de Madre de Dios en el año 2022.
- O.E.6 Clasificar la cobertura de suelo en una plantación de *Tectona grandis*L. mediante un modelo de regresión basado en Random Forest de la combinación de datos GEDI nivel 2A, Sentinel-1 y Sentinel-2 en la Amazonia de Madre de Dios en el año 2022.

1.4 Variables de la investigación

1.4.1 Identificación de variables

Variable Dependiente

✓ Comportamiento de la altura del dosel, densidad de biomasa y cobertura de suelo en una plantación de *Tectona grandis* L.

Variable Independiente

- ✓ Altura del dosel y densidad de biomasa de la plantación con datos GEDI en el año 2022.
- ✓ Altura y densidad de la biomasa de la plantación con datos combinados de GEDI con Sentinel-1, -2 y modelo de elevación digital en el año 2022.

1.5 Operacionalización de variables

Las variables y su operacionalización de detallan en la Tabla 1.

Tabla 1. Operacionalización de variables

Definición conceptual	Definición operacional	Dimensión	Indicadores	Ítems
Variable independiente				
La evaluación del tipo de haz de GEDI nivel 2A permite determinar los valores de referencia más exactos con los datos de campo en una plantación de <i>Tectona grandis</i> L.	Determinar el cuantil (RH) más adecuado en la estimación de la altura del dosel.	Percentiles del haz de GEDI nivel 2A.	Rh a diferentes probabilidades.	P.E.1
Los datos GEDI 2A permite estimar la altura del dosel en una plantación de <i>Tectona grandis</i> L.	Cuantificar la cobertura de la altura de dosel con datos GEDI 2A.	Altura de dosel en función al cuantil seleccionado.	Altura mínima, máxima y media.	P.E.2
Determinar la altura del dosel y el modelo basado en RF de la combinación de datos GEDI nivel 2A con Sentinel-1, -2 y modelo de elevación digital en una plantación de <i>Tectona grandis</i> L.	Determinar la altura y eficiencia del modelo.	Altura y modelo de las variables en la estimación de la altura de dosel.	Altura mínima, máxima y media. Coeficiente de determinación y error cuadrático medio.	P.E.3
do robiona grandio E.			Matriz de confusión e Índice de Kappa.	
Los datos GEDI 4B permite cuantificar la biomasa en una plantación de <i>Tectona grandis</i> L.	Determinar a cobertura de la densidad de biomasa con datos GEDI 4B.	Densidad de biomasa.	Densidad de biomasa mínima, máxima y media.	P.E.4
Determinar la densidad de biomasa y el modelo basado en RF de la combinación de datos GEDI nivel 4B con Sentinel-1, -2 y modelo de elevación digital en una plantación de Tectona grandis L.	Determinar la densidad de biomasa y eficiencia del modelo.	Densidad de biomasa y modelo de las variables en la estimación de la densidad de la biomasa.	Densidad de biomasa mínima, máxima y media. Coeficiente de determinación y error cuadrático medio.	P.E.5
			Matriz de confusión e Índice de Kappa.	
Clasificar la cobertura de suelo en una plantación de <i>Tectona grandis</i> L.	Cuantificar la cobertura de suelo mediante	Vegetación en la plantación.	Tipos de vegetación por densidad.	P.E.6

mediante un modelo de regresión Random Forest basados de la combinación de datos GEDI nivel 2A, Sentinel-1 y -2.	datos combinados.				
Variable dependiente	Variable dependiente				
Comportamiento de la altura, densidad de biomasa y cobertura de suelo en una plantación de <i>Tectona grandis</i> L.	Altura, densidad de biomasa y cobertura de suelo en función a haz y vía de datos espaciales.	,	Altura, densidad de biomasa y cobertura de suelo.	P.E.1 P.E.2 P.E.3 P.E.4 P.E.5 P.E.6	

1.6 Hipótesis

Hipótesis nula (Ho): La incorporación de datos de la estructura de la vegetación mediante datos GEDI combinados con Sentinel-1, -2 y modelos de elevación digital no aumenta la precisión en la estimación de la altura del dosel y densidad de biomasa en una plantación de *Tectona grandis* L. en la Amazonia de Madre de Dios, año 2022.

Hipótesis alterna (H1): La incorporación de datos de la estructura de la vegetación mediante datos GEDI combinados con Sentinel-1, -2 y modelos de elevación digital puede aumentar la precisión en la estimación de la altura del dosel y densidad de biomasa en una plantación de *Tectona grandis* L. en la Amazonia de Madre de Dios, año 2022.

1.7 Justificación e importancia

La estimación y mapeo rápidos y precisos de la altura y la biomasa aérea forestal es el trabajo básico de la gestión forestal y la investigación dinámica del ecosistema, que es de gran importancia para evaluar la calidad del bosque, la evaluación de los recursos y el ciclo y la gestión del carbono. La Investigación de Dinámica de Ecosistemas Globales (GEDI) tiene un alcance láser de alta resolución de los bosques y la topografía de la Tierra desde la Estación Espacial Internacional (ISS), y es uno de los más recientes sensores de alcance y detección de luz (LiDAR) lanzados desde el espacio, las formas de onda Lidar cuantifican la distribución vertical de la vegetación al registrar

la cantidad de energía láser reflejada por el material vegetal (tallos, ramas y hojas) a diferentes alturas sobre el suelo. De las formas de onda GEDI, se pueden extraer cuatro tipos de información de la estructura: topografía de la superficie, métricas de altura del dosel, métricas de cobertura del dosel y métricas de estructura vertical. GEDI tiene la resolución más alta y el muestreo más denso de cualquier lidar jamás puesto en órbita. Esto ha requerido el desarrollo de una serie de tecnologías innovadoras en el Centro de Vuelo Espacial Goddard de la NASA. Sin embargo, las huellas con un promedio de 25 m de diámetro separadas por 60 m a lo largo de la vía y 600 m a través de la vía presentan limitaciones para una distribución espacial completa. Para compensar la deficiencia del LiDAR espacial, las imágenes Sentinel-1, -2 y un modelo de elevación digital serán utilizadas en la plataforma Google Earth Engine (GEE) mediante técnicas de combinación con GEDI para el mapeo continuo de la altura y la biomasa en nuestro estudio. El aprendizaje por conjuntos puede resumir las ventajas de los modelos de estimación y lograr mejores resultados de estimación. Se utilizó un algoritmo de apilamiento de Random Forest (RF) para el modelado y la estimación de altura, densidad de biomasa y cobertura en una plantación de *Tectona grandis* L. en la Amazonia de Madre de Dios en el año 2022.

1.8 Consideraciones éticas

La tecnología de teledetección tiene el potencial de obtener rápidamente el estado de crecimiento de la vegetación a gran escala, lo que proporciona una referencia eficaz para el seguimiento y la gestión de los recursos forestales. La extracción de información sobre la vegetación a partir de imágenes de teledetección y su combinación con una pequeña cantidad de datos medidos en el suelo para el modelado se ha convertido en una forma efectiva y popular de obtener la altura de dosel y la densidad de biomasa a nivel regional.

El estudio contó con el apoyo y asesoramiento especializado del Centro de Teledetección para el Estudio y Gestión de los Recursos Naturales (CETEGERN) de la UNAMAD, en ese sentido, el tesista se adecuó a los lineamientos y protocolos del CETEGERN.

CAPÍTULO II: MARCO TEÓRICO

2.1 Antecedentes de la investigación

Dwiputra et al. (2023) en su estudio métricas de forma de onda GEDI en el mapeo de vegetación en un paisaje de bosque tropical heterogéneo, extrajeron 121 métricas de forma de onda de productos de datos de nivel 1B y nivel 2A en 1062 ubicaciones en cinco tipos de vegetación clave. Después de reducir la dimensionalidad de las variables de altura relativa a través de regresiones lineales simples, desarrollaron un clasificador Random Forest para predecir las clases de vegetación con base en 23 métricas GEDI. Las métricas de GEDI por sí solas fueron útiles para identificar los tipos de vegetación con un 81 % de precisión. La clase de tierras de cultivo/pastizales tuvo la precisión de predicción más alta (precisión del usuario [UA] = 89 %; precisión del productor [PA] = 91 %), mientras que el bosque seco caducifolio tuvo la precisión más baja (UA = 73 %; PA = 69 %). La mayor precisión de clasificación en la escala de la huella se obtuvo de la combinación de GEDI, Sentinel-1 y Sentinel-2 (88,3 %).

Kacic et al. (2023) caracterizaron la estructura forestal en Alemania mediante productos y análisis basados en datos de GEDI, Sentinel-1 y Sentinel-2. Encontraron una disminución en la altura media del dosel en Alemania desde 2017 (alrededor de 22,5 m) hasta 2022 (alrededor de 20 m). El análisis de la densidad de la biomasa presenta una disminución constante media en Alemania desde 2017 (alrededor de 200 Mg/ha) hasta 2022 (alrededor de 165 Mg/ha).

Li et al. (2023) realizaron la validación de alturas de dosel GEDI en sabanas africanas. Se analizaron 22 813 huellas GEDI en 11 sitios, los SG 4–6 que están dirigidos a bosques densos tuvieron errores mucho mayores que los SG 1–3. Las condiciones fenológicas en el momento de la adquisición de datos

GEDI tuvieron una gran influencia en el error del orbe RH98. Durante las condiciones de hoja activa para la vegetación de sabana con RH98 sim < 15 m, el orbe RH98 fue muy preciso con R 2 = 0,61, sesgo medio = -0,55 m, %sesgo = -11,1 %, RMSE = 1,64 m y %RMSE = 29,8 %. El sesgo del orbe RH98no fue influenciado por la cobertura del dosel. Debido al ancho de pulso GEDI LiDAR de 15,6 ns, el producto de datos GEDI-RH98 no puede estimar de manera confiable las alturas del dosel de los arbustos por debajo de 2,34 m y requerirá una desconvolución más compleja de la forma de onda. El RH98 de GEDI estima con precisión la altura del dosel de los árboles entre 3 y 15 m, lo que permite evaluar la altura del dosel en vastas áreas de sabana.

Ngo et al. (2023) evaluaron la altura de la cima del bosque tropical mediante el valor potencial de usar datos de detección remota (RS) (es decir, Sentinel-2 óptico, Sentinel-1 de radar y PALSAR-2 de radar) para extrapolar las mediciones del modelo de altura del dosel forestal (CHM) a nivel de huella de GEDI en cuatro sitios de bosques tropicales en América del Sur y África. Descubrimos que la métrica de altura relativa (RH) de GEDI es la mejor con un 98 % (RH98), filtrado por disparos a máxima potencia con una sensibilidad superior al 98%.

Di Tommaso et al. (2021) combinaron datos GEDI y Sentinel-2 para el mapeo de pared a pared de cultivos altos y bajos en China, Francia y Estados Unidos. Demostraron que los perfiles de energía de GEDI pueden distinguir de manera confiable el maíz, un cultivo que suele tener más de 2 m de altura, de cultivos como el arroz y la soja que son más bajos. GEDI fue capaz de distinguir el maíz de otros cultivos dentro de cada región con precisiones superiores al 84% y puede transferir entre regiones con precisiones superiores al 82%, en comparación con el 64% para la transferencia de características ópticas. Finalmente, mostraron que los perfiles GEDI se pueden usar para generar etiquetas de entrenamiento para modelos basados en imágenes ópticas de Sentinel-2, lo que permite la creación de mapas de pared a pared de 10 m de cultivos altos versus cortos en regiones con escasez de etiquetas. Healey et al. (2020) calibraron un modelo altamente local con un nuevo activo GEDI LiDAR en Google Earth Engine para reducir la saturación de la señal de altura del bosque con datos Landsat. Los resultados muestran que el error

medio de predicción se redujo en un 23% y los sesgos de predicción importantes en los extremos del rango de altura del dosel se redujeron a medida que la calibración del modelo se hizo más local, minimizando la saturación de la señal de la estructura forestal comúnmente asociada con Landsat y otros sensores ópticos pasivos.

Silva et al. (2019a) estimaron los atributos del bosque en la industria de *Pinus taeda* L. en plantaciones forestales en Brasil utilizando el Lidar espacial GEDI simulado de datos de la NASA. En campo, se midieron 100 parcelas y se midió la altura del dosel superior (HMAX; m) y el volumen de madera (V; m3/ha). Las métricas derivadas de GEDI se simularon utilizando datos de lidar aerotransportado (ALS). Usamos regresión lineal múltiple para modelar HMAX y V a partir de métricas similares a GEDI, y encontraron que los modelos se definían en función de solo tres métricas similares a GEDI (RH98: altura del dosel a 98 percentiles de energía, COV: cobertura del dosel; FHD: diversidad de altura del follaje) tuvo un poder predictivo muy fuerte e imparcial.

2.2 Base teórica

2.2.1 Bosque

Sistema ecológico complejo en el que los árboles son la forma de vida dominante. El bosque es una gran área geográfica dominada por árboles, animales de varias especies, biomas acuáticos y microorganismos. El estudio del bosque y sus diversos aspectos se vuelve imperativo si se quiere aprender sobre la interacción biológica de las especies a gran escala. El estudio de las relaciones interdependientes de la flora y la fauna en un bosque se denomina ecosistema forestal. En tales ecosistemas, toda la interacción ocurre naturalmente entre todos los componentes abióticos y bióticos. El potencial ecológico de cualquier especie depende de los requisitos de su hábitat, como la temperatura, el clima, la frugalidad, la vida útil y la capacidad de reproducción (Whitmore y Burnham 1975; FAO 2012).

2.2.2 Altura de dosel

Los modelos de altura del dosel son una medida de la altura de los árboles, edificios y otras estructuras sobre la topografía del suelo. Este producto se utiliza en una variedad de aplicaciones forestales, incluido el seguimiento de

la vegetación y los árboles en un bosque a lo largo del tiempo, el cálculo de la biomasa y la estimación del índice de área foliar (Bente et al. 2019).

2.2.3 Densidad de biomasa aérea

La biomasa forestal es una medida importante de la productividad de los ecosistemas y se utiliza para cuantificar el papel de los bosques en el ciclo del carbono, el potencial de producción de energía y la estimación de las reservas de carbono para la modelización del cambio climático. En general, la biomasa forestal se puede dividir en biomasa viva aérea (AGB), que incluye tallos, tocones, ramas, cortezas, semillas y follaje, biomasa viva subterránea (BGB), que consiste en todas las raíces vivas con más de 2 mm de diámetro, y la masa muerta de hojarasca fina y gruesa asociada al suelo. AGB, que es más fácil de medir, se puede utilizar como base para estimar los otros reservorios de carbono terrestres, por lo tanto, los esfuerzos de investigación sobre la estimación de la biomasa se centraran en ello (Galidaki et al. 2017; Bente et al. 2019).

2.2.4 Principios básicos de la teledetección

Tecnología utilizada para recopilar datos sobre un objeto, lugar o fenómeno sin ningún contacto físico real con él se conoce como detección remota. Es el método de detección y escaneo de las características físicas de un objeto, lugar o fenómeno midiendo la radiación reflejada y emitida a distancia (generalmente con la ayuda de un satélite o una aeronave) (Anji-Reddy 2010). Se puede definir como el portador de sensores de teledetección. Hay tres plataformas principales de teledetección, que se mencionan a continuación:

- ✓ Plataformas a nivel del suelo: como grúas y torres
- ✓ Plataformas aéreas: como helicópteros, aeronaves de gran altitud y aeronaves de baja altitud.
- ✓ Plataformas espaciales: como transbordadores espaciales, satélites geoestacionarios y satélites de órbita polar.

Se utilizan principalmente dos tipos de sensores, que se mencionan a continuación:

✓ Detección remota activa: utiliza una fuente artificial de radiación como investigación, y la señal resultante, que se dispersa hacia el sensor, representa la Tierra o la atmósfera. El sistema de radar de apertura sintética: es un tipo de sensor activo que puede emitir radiación en forma de haz proveniente de un sensor en movimiento y también puede medir los componentes retro dispersados que regresan al sensor desde el suelo en la región de las microondas.

✓ Detección remota pasiva: depende únicamente de la radiación solar como fuente de energía, que se puede ver en sensores multiespectrales e hiperespectrales. Se concentra principalmente en las regiones espectrales del visible, infrarrojo cercano e infrarrojo de onda corta (Anji-Reddy 2010).

2.2.5 Sensores

Los sensores son instrumentos que recopilan datos sobre los procesos de la Tierra o los componentes atmosféricos. Además de transportarse a bordo de satélites o aeronaves, los sensores también se pueden instalar en tierra (in situ). Hay dos tipos de sensores: activos y pasivos. Los sensores activos proporcionan su propia fuente de energía para iluminar los objetos que observan; Los sensores pasivos detectan la energía emitida o reflejada por el entorno (Anji-Reddy 2010; Chuvieco 2016).

2.2.6 Programa Copérnico

Es un programa de Observación de la Tierra de la Unión Europea. Es un proveedor líder de datos de observación de la Tierra, que se utilizan para proveedores de servicios, autoridades públicas y otras organizaciones internacionales para mejorar la calidad de vida de los ciudadanos europeos. Los datos recopilados de EO benefician la respuesta de emergencia, la seguridad alimentaria mundial, el control fronterizo y la seguridad nacional al contribuir a la vigilancia marítima. (Anji-Reddy 2010; Chuvieco 2016; Lulla et al. 2021).

Sentinel-1: es una constelación de dos satélites de radar de imágenes operados por la ESA. Sentinel-1B experimentó una anomalía que le impidió entregar datos de radar en diciembre de 2021, y el lanzamiento de Sentinel-1C está previsto para 2023 (Potin 2013).

Sentinel-2: parte del programa Copérnico de la ESA son en realidad dos satélites separados: S-2A y S-2B. S-2A se lanzó el 23 de junio de 2015 y 2B se lanzó dos años después, el 7 de marzo de 2017. Tanto el 2A como el 2B son satélites ópticos, con múltiples detectores de longitud de onda, principalmente para monitorear cambios en tierra, pero también pueden funcionar sobre el agua. Esto le da la capacidad de capturar imágenes sorprendentes. Los datos pueden ayudar a una amplia gama de industrias, desde aseguradoras hasta piscicultores y desde comerciantes de productos básicos hasta urbanistas. Los datos de S-2 permiten la detección de cambios en la tierra, la identificación de cultivos o la distinción entre nieve y nubes, todo lo cual permitirá que se realice un análisis más efectivo (Frampton et al. 2013).

2.2.7 Dinámica de Ecosistemas Globales (GEDI)

observaciones de rango láser de alta resolución de la estructura 3D de la Tierra. Las mediciones precisas de GEDI de la altura del dosel forestal, la estructura vertical del dosel y la elevación de la superficie mejoran en gran medida nuestra capacidad para caracterizar procesos importantes del ciclo del agua y del carbono, la biodiversidad y el hábitat (Dubayah et al. 2020). Los datos de GEDI sobre la estructura de la superficie también son de gran valor para el pronóstico del tiempo, la gestión forestal, el monitoreo de glaciares y capas de nieve, y la generación de modelos digitales de elevación más precisos. GEDI proporciona la pieza faltante, la estructura 3D, en los activos de observación de la NASA que nos permite comprender mejor cómo se comporta la Tierra como sistema y guía las acciones que podemos tomar para mantener los recursos críticos (Dubayah et al. 2020).

La Investigación de Dinámica de Ecosistemas Globales (GEDI) produce

El instrumento GEDI es un sistema láser de detección de luz y alcance (lidar) de clase geodésica compuesto por 3 láseres que producen 8 pistas paralelas de observaciones. Cada láser dispara 242 veces por segundo e ilumina un punto de 25 m (una huella) en la superficie sobre la que se mide la estructura 3D. Cada huella está separada por 60 m a lo largo de la vía, con una distancia transversal de unos 600 m entre cada una de las 8 vías. GEDI esperaba

producir alrededor de 10 mil millones de observaciones sin nubes durante la duración nominal de su misión de 24 meses (Dubayah et al. 2020).

Los productos de datos científicos de GEDI incluyen conjuntos de datos de huellas y cuadrículas que describen las características 3D de la Tierra. A estos productos de datos se les asignan diferentes niveles, que indican la cantidad procesamiento que han sufrido los datos después recopilación. Todos los productos están disponibles públicamente, con los productos de nivel inferior (L1 y L2) del Centro de Archivo Activo Distribuido de Procesos Terrestres (LPDAAC) de la NASA y el nivel superior (L3 y L4) del ORNL DAAC. Los datos se transfieren inicialmente al Centro de Operaciones de Misión (MOC) de GEDI en el Centro de Vuelo Espacial Goddard que implementa la planificación de adquisición semanalmente y luego se procesan a través del Centro de Operaciones Científicas (SOC) para distribuir productos de datos científicos a los DAAC anteriores (Dubayah et al. 2020).

Tabla 2. altimetría láser recibidas por el instrumento GEDI

GEDI	Descripción	Productos de datos	
L1A- 2A	Transmisión y recepción de interpretación de formas de onda y generación de productos L1A y L2A	1A: formas de onda sin procesar 2A: Métricas de elevación del suelo, altura superior del dosel, altura relativa (RH)	
L1B	Geolocalización de forma de onda para productos L1 y L2	Formas de onda geolocalizadas	
L2B	Métricas de cubierta de dosel y perfil vertical	Fracción de cobertura del dosel (CCF), perfil CCF, índice de área foliar (LAI), perfil LAI	
L3	Métricas de superficie terrestre cuadriculadas	Métricas de nivel 2 en cuadrícula	
L4A	Huella sobre el suelo Densidad de biomasa	Nivel de huella de biomasa sobre el suelo	
L4B	Producto de biomasa reticulada	Densidad de biomasa sobre el suelo cuadriculada (AGBD)	

2.2.8 Modelo de elevación digital

Un modelo de elevación digital (DEM) es un conjunto de datos cartográficos digitales que representa una superficie de elevación topográfica continua a través de una serie de celdas. Cada celda representa la elevación (Z) de una característica en su ubicación (X e Y). Los modelos de elevación digital son una representación de "tierra desnuda" porque solo contienen información sobre la elevación de las características geológicas (del suelo), como valles, montañas y deslizamientos de tierra, por nombrar algunas. No incluyen ningún dato de elevación relacionado con características no terrestres, como vegetación o edificios. Los modelos de elevación digital se pueden utilizar para crear mapas topográficos de terreno terrestre, así como mapas batimétricos, que sirven para ilustrar el terreno submarino (Fu y Wang 2023).

2.2.9 Cobertura de suelo

La cobertura terrestre corresponde a una descripción biofísica de la superficie terrestre. Es lo que se superpone o actualmente cubre el suelo. Esta descripción permite distinguir varias categorías biofísicas, básicamente áreas de vegetación (árboles, arbustos, campos, césped), suelo desnudo, superficies duras (rocas, edificios) y áreas húmedas y cuerpos de agua (cursos de agua, humedales) (Turner et al. 1995; Naikoo et al. 2022).

2.2.10 Google Earth Engine (GEE)

GEE es una plataforma de procesamiento geoespacial que permite la visualización y análisis de datos a escala planetaria. Dado que esta aplicación está basada en la nube, esto permite velocidades de procesamiento mucho más rápidas en comparación con la ejecución de dicha aplicación en su máquina local. El Editor de código se divide en 4 módulos diferentes: Administrador, Editor de código, Consola y Mapa (Mutanga y Kumar 2019; GEE 2021).

Google Earth Engine combina un catálogo con petabytes de imágenes de satélite y conjuntos de datos geoespaciales con capacidades de análisis a escala planetaria y lo pone a disposición de científicos, investigadores y desarrolladores con el fin de detectar cambios, mapear tendencias y

cuantificar diferencias en la superficie de la Tierra (Mutanga y Kumar 2019; GEE 2021).

2.2.11 Random Forest

Es un algoritmo de aprendizaje automático supervisado que se construye a partir de algoritmos de árboles de decisión. Este algoritmo se aplica en varias industrias, como la banca y el comercio electrónico, para predecir el comportamiento y los resultados (Tin 1995; Breiman 2001b; Kulkarni y Lowe 2016).

2.3 Definición de términos

GEDI: La Investigación de Dinámica de Ecosistemas Globales (GEDI) produce observaciones de rango láser de alta resolución de la estructura 3D de la Tierra (Dubayah et al. 2020).

Sentinel-1: Misión espacial financiada por la Unión Europea y llevada a cabo por la Agencia Espacial Europea (ESA) dentro del Programa Copérnico. Sentinel-1 recopila imágenes de radar de apertura sintética (SAR) de banda C en una variedad de polarizaciones y resoluciones (Torres et al. 2012).

Sentinel-2: El satélite está equipado con un sensor multiespectral optoelectrónico para levantamientos con una resolución Sentinel-2 de 10 a 60 m en las zonas espectrales visible, infrarrojo cercano (VNIR) e infrarrojo de onda corta (SWIR), incluidos 13 canales espectrales, lo que asegura la captura de las diferencias en el estado de la vegetación, incluidos los cambios temporales, y también minimiza el impacto en la calidad de la fotografía atmosférica (Delegido et al. 2011).

DEM: Conjunto de datos cartográficos digitales que representa una superficie de elevación topográfica continua a través de una serie de celdas (Fu y Wang 2023).

Altura de dosel: Medida de la altura de los árboles, edificios y otras estructuras sobre la topografía del suelo (Bente et al. 2019).

Densidad de biomasa: Productividad de los ecosistemas y se utiliza para cuantificar el papel de los bosques en el ciclo del carbono (Bente et al. 2019).

CAPÍTULO III: METODOLOGÍA DE INVESTIGACIÓN

3.1 Tipo de estudio

El estudio es descriptiva, correlacional y predictivo, porque modelará los atributos forestales y cubierta terrestre con datos GEDI e imágenes Sentinel en una plantación forestal de *Tectona grandis* L. de la Amazonia de Madre de Dios para el año 2022 (Castro 2003; Baray 2006; Cazau 2006; Hernández et al. 2010; León y González 2020).

3.2 Diseño del estudio

El diseño del estudio corresponde a un diseño no experimental transaccional (transversal) porque modelara los atributos forestales y cubierta terrestre con datos GEDI e imágenes Sentinel en una plantación forestal de *Tectona grandis* L. de la Amazonia de Madre de Dios para el año 2022 (Castro 2003; Baray 2006; Cazau 2006; Hernández et al. 2010; Pei et al. 2021; González-Esteban y Patrici Calvo 2022).

3.3 Delimitación espacial y temporal

El área de estudio se encuentra en la Amazonia de Madre de Dios, específicamente en la provincia de Tahuamanu (11°16'30" y 11°18'7" S, 68°26'56" y 69°27'51" O) y tiene una superficie aproximada de 207,6103 ha. El área de estudio presenta una humedad relativa entre 63% y 90% y con una temperatura promedio anual de 25°C a 27°C, con variaciones de picos altos entre septiembre y abril, y bajos en los meses de mayo y agosto (-10°C) (GOREMAD y IIAP 2009; SENAMHI 2015; Alarcón et al. 2016; Alarcon-Aguirre et al. 2021). Los ríos Tahuamanu, Manuripe y el Acre son los más prominentes del área de estudio. "El clima es Tropical Cálido y Húmedo: Bosque Húmedo Tropical (Holdridge 1967), con 2120 mm de precipitación

anual promedio y una altitud promedio de 250 m s.n.m." (Alarcon-Aguirre et al. 2021) (Figura 1).

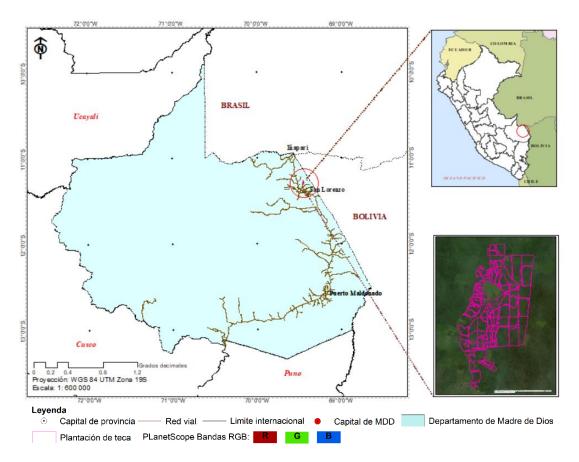


Figura 1. Ubicación del área de estudio, Madre de Dios – Perú.

Fuente: Alarcón et al. (2016).

La plantación consideró para el estudio un área instalada de aproximadamente en seis (6) tiempos distintos: 1. Noviembre de 2009, 2. Octubre y noviembre de 2011, 3. Entre enero y abril de 2012, 4. En febrero y diciembre de 2014, 5. Diciembre de 2015, y 6. Diciembre de 2016.

La evaluación temporal del estudio correspondió al periodo de diciembre de 2022.

3.4 Población y muestra

La población está conformada por una plantación forestal de *Tectona grandis* L. de la empresa INVERSIONES FORESTALES DEL SUR SAC especializada en el apoyo a la silvicultura. De esta manera se consideró como población un área de 207,6103 ha.

El cálculo del número de muestras estará en función a la superposición de huellas de datos GEDI L2A y 4B con los individuos de la plantación. En nuestro caso estuvo conformado por; 2A con 151 superposiciones y 194 para 4B.

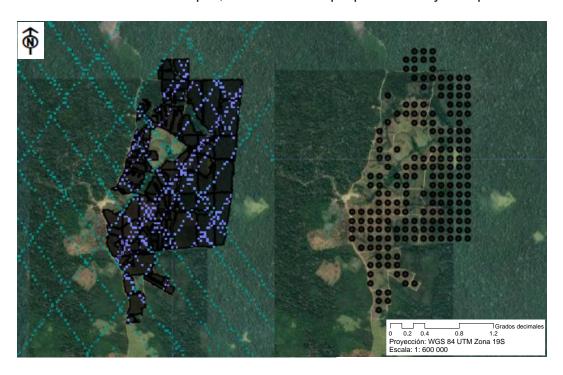


Figura 2. Ubicación de huellas de muestreo, 2A a la izquierda y 4B a la derecha.

3.5 Método y técnicas

La metodología del presente estudio se basó en el enfoque que combina métricas espectrales temporales de Sentinel-1 y Sentinel-2 de atributos de estructura de vegetación de una plantación de *T. grandis* basados en Datos GEDI L2A y 4B para la época seca de 2022 en la provincia de Tahuamanu (Kacic et al. 2021; Kacic y Kuenzer 2022; Kacic et al. 2023). El estudio consideró para el análisis de la estructura forestal de la altura del dosel y la densidad de biomasa, así como mejorar la eficiencia del procesamiento y evitar exceder los límites computacionales de Google Earth Engine (GEE), el uso exclusivo de las bandas de Sentinel-1, -2, modelo de elevación digital (DEM) de 30 m de la Misión Topográfica Shuttle Radar (SRTM) y muestras GEDI en el área de estudio.

Inicialmente se extrajeron métricas de GEDI (CHM) basadas en los gránulos de Nivel 2A y 4B, de las cuales las métricas de rh serán extraídas directamente de productos de datos de Nivel 2A. Estas métricas se agruparon en diversas

categorías, en nuestro caso se filtró por tipo de haz (beam), métricas de elevación a nivel de huella, y altura relativa (métricas rh: rh0, rh25, rh50, rh75, rh80, rh85, rh90, rh95, rh98), donde se probó la eficiencia del rh que más se ajusta a los datos de campo obtenido en la plantación a través de cálculos estadísticos. En cuanto a GEDI 4B se compiló un conjunto referenciado con datos campo existentes. Se usaron medidas de árboles individuales, incluido el diámetro a la altura del pecho (DAP) o por encima de las deformidades basales y la altura de los árboles para hacer coincidir las huellas GEDI simuladas respecto a datos de campo. Se calculó el AGBD de árboles individuales a partir del DAP utilizando un modelo alométrico ampliamente probados (Ecuación 1) (Rodríguez et al. 2018; Marroquín 2019).

Lo productos de datos Sentinel-1 preprocesados fueron de la época estacional de junio a septiembre y se agregaron en métricas espectrales temporales mediante el cálculo de percentiles (25 y 75) para obtener un rango intercuartílico (IQR) basado en la mediana (50). De manera similar, los productos de Sentinel-2 en el mismo período temporal que los datos de Sentinel-1 se redujeron a métricas percentiles (25, 75) (Silva et al. 2019a; Dubayah et al. 2020; Hofton et al. 2020; Di Tommaso et al. 2021; Dubayah et al. 2022; Lahssini et al. 2022; Kacic et al. 2023). Además de las métricas multitemporales de Sentinel-1 y -2, se agregó a la combinación de datos la información de elevación monotemporal derivada de la Misión Topográfica Shuttle Radar. En la ubicación del centroide de las huellas GEDI, se extrajeron los valores de píxel Sentinel-1 y -2. Las muestras de GEDI se dividió en una proporción de muestras de entrenamiento (60%) y de prueba (40%) para poder realizar una validación independiente del modelo de acuerdo con diferentes criterios de eficiencia (Bente et al. 2019; Duncanson et al. 2020; Healey et al. 2020; Hofton et al. 2020; Adrah et al. 2021; Kacic et al. 2021; Corte et al. 2022; Hoffrén et al. 2023; Rajab Pourrahmati et al. 2023). Los datos de Sentinel y GEDI se recortaron en una máscara que constara de las clases de cobertura terrestre clasificadas en función a la altura del dosel: 1 = 0 m - 5 m (cubierta vegetal y praderas); 2 = 5 m - 8 m (matorrales o bosques abiertos); 3 = 8 m - 10 m (zona arbolada con baja densidad); 4 = 10 m - 15 m

(zonas arboladas de densidad media); 5 = 15 m - 30 m (zonas arboladas de densidad alta) (Brown et al. 2022).

Para derivar productos de la altura del dosel y AGBD de 2022 en una plantación de *T. Grandis*, se entrenó bajo un modelo de Random Forest (RF) para cada atributo. Los modelos de regresión de RF con atributos GEDI de la estructura de la plantación como variables de respuesta predichas por las métricas espectrales temporales Sentinel-1 y -2 se entrenaron con la configuración predeterminada establecida en GEE (Breiman 1996; Breiman 2001b; Kacic et al. 2023). RF fue entrenado en función de métricas espectrales temporales de Sentinel-1 y -2.

Para medir la coincidencia entre las métricas del modelo de GEDI y datos de campo se combinarán diferentes técnicas de validación del modelo bajo criterios de eficiencia y muestras de prueba independientes: coeficiente de determinación (R2, Ecuación (2)), coeficiente de correlación de Pearson (r, Ecuación (3)), el error cuadrático medio general (RMSE, Ecuación (4)), el error cuadrático medio (rRMSE, ecuación (5)), sesgo (Ecuación (6)) y % de rBias (Ecuación (7)) (Silva et al. 2019a; Duncanson et al. 2020; Healey et al. 2020; Duncanson et al. 2022; Kacic y Kuenzer 2022; Torresani et al. 2023).

3.6 Tratamiento de datos

3.6.1 Procesamiento de datos

El análisis de la estructura forestal en una plantación de *T. grandis* en el 2022 se basó en datos de Sentinel-1, Sentinel-2, DEM y GEDI. La combinación de conjuntos de datos de teledetección espaciales complementarios de misiones de mapeo (Sentinel-1, Sentinel-2) y misiones de muestreo (GEDI) permitió la generación de productos de estructura forestal aceptable. Se siguió las siguientes fases:

 Como fase inicial se extrajo los datos de GEDI 2A y 4B, donde se probó la eficiencia de rh para la estimación de la altura del dosel por nivel de métrica (rh0, rh25, rh50, rh75, rh80, rh85, rh90, rh95, rh98) con los datos de campo obtenidos mediante la aplicación de estadística descriptiva (área, altura máxima, altura media, altura mínima, altura mediana, varianza, deviación estándar y coeficiente de variabilidad). Seguidamente se determinó la densidad de la biomasa media en función a la superposición de las huellas de GEDI con los datos de campo, para ellos, se usaron medidas de árboles individuales, incluido el diámetro a la altura del pecho (DAP) o por encima de las deformidades basales y la altura de los árboles para hacer coincidir las huellas GEDI simuladas respecto a datos de campo. Se calculó el AGBD de árboles individuales a partir del DAP utilizando un modelo alométrico ampliamente probados (Ecuación 1) (Rodríguez et al. 2018; Marroquín 2019).

$$B = 7.35^{0.16*d}$$
 (Ecuación 1)

Donde d el diámetro.

- 2. En cuanto a datos de teledetección, los datos de Sentinel-1 Ground-Range-Detected (GRD, resolución espacial de 10 m) fueron procesados para el análisis mediante la aplicación de filtrado moteado, normalización radiométrica del terreno y eliminación del ruido de borde según Mullissa et al. (2021). Además, los datos de Sentinel-1 se filtraron la polarización VV y VH. Los datos se agregaron en métricas espectrales en función al cálculo de percentiles (25 y 75) para obtener un rango intercuartílico (IQR) basado en la mediana (50) y comprendió entre los meses de junio a septiembre de 2022 (Tabla 3 y Figura 4).
- 3. Los datos de Sentinel-2 se obtuvieron como producto de reflectancia superficial (L2A, procesado con sen2cor) (Fernández-Manso et al. 2016) y los pasos de procesamiento adicionales si es que corresponde comprendieron el enmascaramiento de nubes y sombras de nubes. En el análisis de los datos de Sentinel-2 se consideró todas las bandas de 10 m, 20 y 60 m. Los datos Sentinel-2 para 2022 derivaron del filtrado entre los meses de junio a septiembre, los datos se redujeron a métricas percentiles (25, 75) para obtener un rango intercuartílico (IQR) basado en la mediana (50) (Silva et al. 2019a; Dubayah et al. 2020; Hofton et al. 2020; Hofton et al. 2022; Kacic et al. 2023). Todo el preprocesamiento de

- Sentinel se realizara el entorno de computación en la nube de Google Earth Engine (GEE) (Tabla 3) (GEE 2021).
- 4. GEDI es un sensor LiDAR de forma de onda completa que está conectado a la Estación Espacial Internacional (ISS) y opera desde abril de 2019. Siguiendo la órbita de la ISS (alrededor de 52°N a 52°S), GEDI toma medidas de alta resolución de la vegetación estructura como huellas de 25 m de diámetro dentro de todos los bosques templados y tropicales. El diseño de muestreo da como resultado ocho pistas terrestres con una distancia transversal de unos 600 m y una distancia a lo largo de la pista de unos 60 m.

Hay varios conjuntos de datos de nivel superior de muestras puntuales de GEDI. Sin embargo, en nuestro caso para una caracterización completa de las condiciones de la estructura forestal en la plantación se utilizó la versión 2,0 de L2A (métricas de elevación y altura) y L4B (densidad de biomasa media sobre el suelo, AGBD) (Dubayah et al. 2020; Duncanson et al. 2020; Dubayah et al. 2022; Duncanson et al. 2022). De los datos GEDI disponibles, se generó un conjunto de datos de altura del dosel y AGBD. A la fecha del procesamiento de datos de GEDI (diciembre de 2022). El filtrado temporal y de calidad de los datos GEDI se realizó localmente (Tabla 3).

Tabla 3. Datos de adquisición de imágenes Sentinel y GEDI

Sensor	Fecha de datos	Nivel de adquisición	Nivel de procesamiento	Orbita
Sentienl-1 (A)	2022-10-20 10:14:44 - 2022-10-20 10:15:15	Interpherometric Wide Swath (IW)	Level-1 GRD	Descendente
Sentinel-2 (A)	2022-10-03 14:56:14		2A	
GEDI 2A	2022-09-02 01:59:52 - 2022-09-02 03:32:42			
GEDI 4B	2019-04-18 00:00:00 - 2023-03-16 23:59:59			

5. Para desarrollar el modelo para la clasificación de la altura del dosel y densidad de biomasa mediante datos combinados de Sentinel-1, -2, DEM y GEDI se utilizó el algoritmo Random Forest (RF), RF es un enfoque de aprendizaje ensemble, desarrollado por Breiman (2001a), para resolver problemas de clasificación y regresión. Ensemble es un esquema de aprendizaje automático para aumentar la precisión múltiples modelos para resolver el mismo problema. En particular, varios clasificadores participan en para obtener resultados más precisos que con un clasificador único. En otras palabras, la integración de múltiples clasificadores disminuye la varianza, especialmente en el caso de clasificadores inestables, y puede producir resultados más fiables. El método de votación que asigna la etiqueta con el mayor número de votos de varios clasificadores es el que se asigna en el entrenamiento (Clark y Niblett 1992; Tin 1995; Islam y Amin 2020). El proceso se realizó a través de la plataforma Google Earth Engine (GEE).

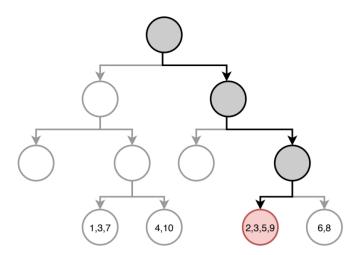


Figura 3. Regresión de Random Forest (RF).

Fuente: Tomado de Tin (1995)

Terminada la clasificación se aplicó el algoritmo de análisis Majority/Minority con un kernel de 3 x 3 y píxel central de 1 (Handbook 1994; Mohammadi-Ghazi et al. 2020).

6. La clasificación de la cobertura del suelo en base a la densidad de la vegetación se realizó al producto obtenido del modelo de la combinación de datos Sentinel-1, -2, DEM y GEDI, para ello, se utilizó lo planteado por Brown et al. (2022), donde: 1 = 0 m - 5 m (cubierta vegetal y praderas); 2 = 5 m - 8 m (matorrales o bosques abiertos); 3 = 8 m - 10 m (zona arbolada con baja densidad); 4 = 10 m - 15 m (zonas arboladas de densidad media); 5 = 15 m - 30 m (zonas arboladas de densidad alta).

Para todos los casos, los datos fueron procesados en el Sistema de proyección World Geodetic System 1984 (WGS 84) zona 19 S.

3.6.2 Precisión de datos

Para verificar el efecto de estimación del modelo, el sesenta por ciento de las muestras se seleccionarán aleatoriamente como muestras de entrenamiento (60%) para construir el modelo, y el cuarenta por ciento restantes (40%) se utilizará para la validación. La evaluación comparativa entre GEDI y los datos de campo se llevó a cabo dentro de los límites de la plantación que cruzan las pistas terrestres de GEDI. Se selecciono tomas GEDI completamente contenidas dentro del área de la plantación. El conjunto total estuvo compuesto por 151. Finalmente, la coincidencia entre las métricas de altura del dosel y densidad de biomasa media sobre el suelo derivadas de GEDI se evaluó en términos del coeficiente de determinación (R², Ecuación (2)), coeficiente de correlación de Pearson ((r, Ecuación (3)), el error cuadrático medio general (RMSE, Ecuación (4)), el error cuadrático medio (rRMSE, Ecuación (5)), sesgo (Bias, Ecuación (6)) y % de rsesgo (rBias, Ecuación (7)) (Long et al. 2020). Un R² mayor representara el mejor ajuste entre el valor observado y el valor predicho. Cuanto menor sea el RMSE, menor será el error de estimación del modelo.

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \hat{y})^{2}}$$
 (Ecuación 2)

$$r = \frac{\sum_{i=1}^{n} [(x_i - x_i)(y_i - \hat{y}_i)]}{\sqrt{\sum_{i=1}^{n} (x_i - \hat{x}_i)^2 * \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}}$$
(Ecuación 3)

donde *yi* son los valores medidos de la altura del dosel y AGB, *yi* son los valores estimados, y n es el tamaño de la muestra.

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (x_i - y_i)^2}{n}}$$
 (Ecuación 4)

$$rRMSE = \frac{RMSE}{\bar{x}}x$$
 100 (Ecuación 5)

$$Bias = \frac{\sum_{i=1}^{n} (y_i - x_i)^2}{n}$$
 (Ecuación 6)

$$rBias = \frac{rBias}{\bar{x}} x \ 100$$
 (Ecuacion 7)

donde n es el número de disparos GEDI, x_i es la métrica de campo en m para la huella GEDI de 25 m de diámetro disparada i, y_i es la métrica de estimación de elevación y AGB a partir del GEDI de huella de 25 m en el GEDI Nivel 2A y 4B, x^- son los valores de elevación media observados en campo estimado en el nivel GEDI de la huella, y^- son los valores de elevación media observados para la métrica estimada por GEDI en el nivel de huella GEDI.

3.6.4 Análisis estadístico

El procedimiento Aplicó estadística descriptiva e inferencial, se empleó los softwares SigmaPlot 15®, ArcGIS 10,8®, ArcGIS Pro 10,8®, RStudio®, y Google Earth Engine (GEE).

Para el primer objetivo, sobre evaluar el tipo de haz de GEDI nivel 2A respecto a valores de referencia de campo en la configuración de láser más adecuada para la estimación de las alturas del dosel en una plantación de *Tectona grandis* L. para el año 2022, se analizó la eficiencia de las métricas rh, para ello se utilizó los softwares SigmaPlot 15®, RStudio®, y Google Earth Engine (GEE).

El segundo y cuarto objetivo, sobre estimar la altura del dosel y densidad de bimasa con datos GEDI nivel 2A y 4B en una plantación de *Tectona grandis* L., se determinó en la plataforma Google Earth Engine (GEE).

Respecto al tercer y quinto objetivo sobre determinar el modelo de regresión Random Forest (RF) de la altura del dosel y densidad de biomasa en base a la combinación de datos GEDI nivel 2A y 4B con Sentinel-1, -2 y modelo de

elevación digital en una plantación de *Tectona grandis* L., se corrió en la plataforma Google Earth Engine (GEE).

El sexto objetivo sobre clasificar la cobertura de suelo en una plantación de *Tectona grandis* L. mediante un modelo de regresión Random Forest basados en la combinación de datos GEDI nivel 2A, Sentinel-1 y Sentinel-2 se corrió en la plataforma Google Earth Engine (GEE).

CAPÍTULO IV: RESULTADOS Y DISCUSIÓN

4.1 Métricas de datos GEDI 2A en una plantación de *Tectona* grandis L.

4.1.1 Tipo de haz de GEDI nivel 2A respecto a valores de referencia de campo en la estimación de las alturas del dosel

Para evaluar la incertidumbre estadística de la altura del dosel, se comparó el conjunto independiente de muestras (observaciones) del GEDI con los datos de campo calculando la Correlación de Pearson (r), el Coeficiente de determinación (R2), Error cuadrático medio (RMSE, m), Error cuadrático medio relativo (rRMSE, %), Bias (m) y rBias (%). Dado que el cálculo se realizó bajo el enfoque del atributo GEDI, los criterios de error se calcularon y agregaron como valores medios (Figura 5-7 y Tabla 4). La relación entre los datos de campo y rh95 fue la mejor en términos de correlación r para la plantación *T. grandis* (Tabla 4). La comparación de los datos de campo – rh95 arrojó el valor de r Pearson de 0,79. El valor de RMSE fue de 2,00 m y en términos de valores de rRMSE, el error fue ligeramente menor para la comparación con otros rh, excepto rh98 y rh100. Mientras que el valor de sesgo fue -0,175 m con un %sesgo de -1,139% (Tabla 4).

Tabla 4. Comparación entre la distribución de altura del dosel (campo) y las métricas de altura relativa (rh) de GEDI en términos de r, R², RMSE, rRMSE, Bias y rBias

Comparación de métricas	Correlación de Pearson (r)	El coeficiente de determinación ajustado (R²)	Error cuadrático medio (RMSE, m)	Error cuadrático medio relativo (rRMSE, %)	Bias (m)	rBias (%)
campo-rh0	-0,009	-0,007	3,260	21,274	-20,254	-132,193
campo-rh25	0,448	0,195	2,915	19,024	-14,837	-96,839
campo-rh50	0,475	0,220	2,869	18,726	-11,351	-74,089
campo-rh75	0,653	0,423	2,468	16,107	-5,956	-38,874
campo-rh80	0,728	0,527	2,234	14,582	-4,576	-29,864
campo-rh85	0,754	0,565	2,143	13,984	-3,191	-20,826

campo-rh90	0,779	0,604	2,044	13,338	-1,666	-10,875
campo-rh95	0,790	0,621	2,000	13,051	-0,175	-1,139
campo-rh98	0,803	0,642	1,944	12,691	1,084	7,072
campo-rh100	0,802	0,641	1,948	12,712	2,549	16,635

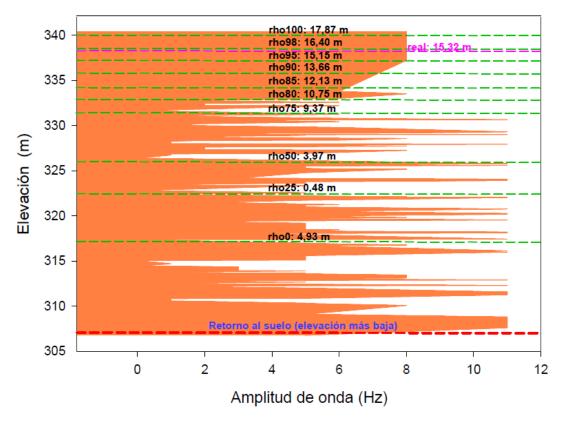
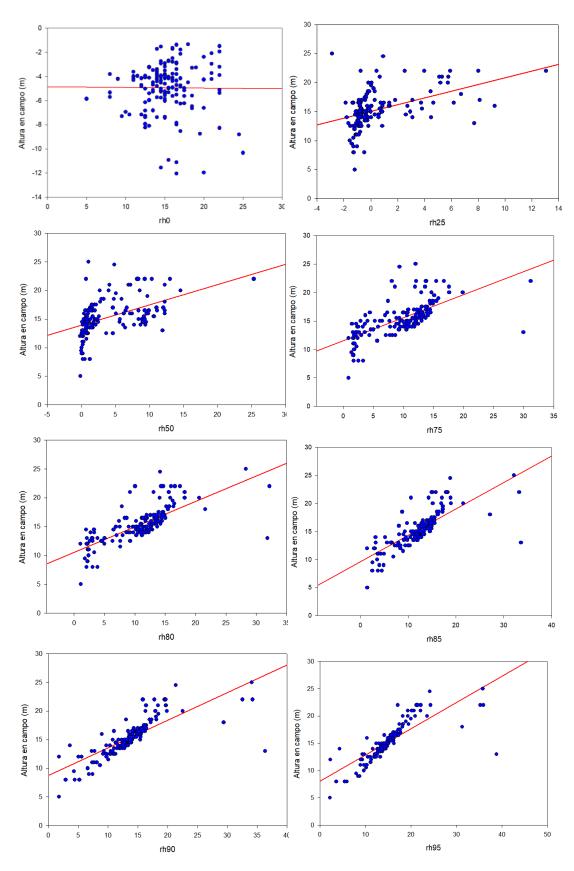



Figura 4. Comparación de métricas de la altura del dosel de datos GEDI 2A.

Finalmente, las figuras 4, 5 y 6 representan la diferencia media y la dispersión de las métricas rh y los datos de campo. Para la plantación en estudio, encontramos diferencias positivas y negativas de rh en promedio, lo que indica que GEDI subestima (rh0-95) y sobrestima (rh98-100) la altura del dosel. Para el caso de rh95, indica que las alturas del dosel del GEDI fueron más bajas que los datos de campo en la cobertura del dosel, sin embargo, se le considera por presentar una menor diferencia. Esta subestimación, podría indicar limitaciones de GEDI para capturar información en áreas fragmentadas de bosque Amazónico.

Figura 5. Diagramas de dispersión entre las métricas derivadas de datos de campo y GEDI para rh0, rh25, rh50, rh75, rh80, rh85, rh90 y rh90.

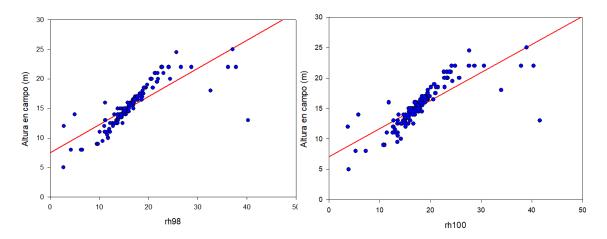


Figura 6. Diagramas de dispersión entre las métricas derivadas de datos de campo y GEDI para rh98 y rh100.

Los datos de GEDI proporciona métricas de humedad relativa que no necesariamente se refieren a la altura superior del dosel (Li et al. 2023). La métrica RH calculo la altura total de los retornos del instrumento LiDAR, incluido el dosel, el sotobosque y el suelo. Si bien se utiliza comúnmente como indicador de la altura del bosque, no es una medida definitiva y debe evaluarse para cada área de estudio (Lahssini et al. 2022). Se inspeccionamos el desempeño de las métricas GEDI rh en diferentes niveles de rh de 0% al 100%, demostrándose que rh95 es una mejor opción que rh100, asimismo rh98 es menos sensible al ruido. De hecho, el rh98 es una opción más común en la literatura reciente (Bente et al. 2019; Silva et al. 2019a; Hofton et al. 2020; Long et al. 2020; Adrah et al. 2021; Di Tommaso et al. 2021; Kacic et al. 2021; Jiang et al. 2022; Zhang et al. 2022; Hoffrén et al. 2023; Li et al. 2023).

Por otro lado, según Kacic et al. (2021) el análisis de sensibilidad respecto a los datos de campo (estimado utilizando valores R²) responde a la variación de los valores de cada parámetro, por ejemplo, para el caso del Gran Chaco Americano, que es la segunda región más grande de cubierta forestal continua en América del Sur después de la Selva Amazónica, el número de árboles influyo en la precisión, donde el ajuste optimo es de aproximadamente 250 árboles, valor que difiere del estudio que comprendió una superposición de 151 huellas. Como resultado, recomendamos rh95 como indicador para la estimación de la altura del dosel y por consiguiente nos centramos en el rh95 con GEDI (altura del dosel) como entrada para su análisis en la investigación.

4.1.2 Altura del dosel con datos GEDI nivel 2A

La tabla 5 muestra la relación entre la diferencia de los datos de campo y los diferentes grupos de sensibilidad del haz GEDI. Dado que el parámetro de sensibilidad del haz proporciona una estimación de la cobertura máxima del dosel a través de la cual GEDI puede detectar el suelo con una probabilidad, se espera que con una mayor sensibilidad se puedan penetrar cubiertas de dosel más densas. Si observamos la tabla 5, la mediana de la diferencia rh comienza desde un valor negativo (-4,00 m) y aumenta al aumentar los valores de sensibilidad hasta llegar a 14,56 m, 15,76 m y 17,18 m con una sensibilidad de 0,95, 0,98 y 1,00.

Tabla 5. Estadística descriptiva de la distribución de altura del dosel por nivel de altura relativa (rh) de GEDI (m)

Variable	Obs	Promedio	Mediana	Desviación estándar	Mínimo	Máximo
rh0	151	-4,932	-4,000	2,099	-12,040	-1,340
rh25	151	0,484	-0,440	2,498	-2,870	13,060
rh50	151	3,970	1,680	4,341	-0,180	25,340
rh75	151	9,365	10,520	5,254	0,860	31,190
rh80	151	10,746	11,450	5,361	1,080	32,200
rh85	151	12,130	12,430	5,206	1,380	33,620
rh90	151	13,655	13,510	5,251	1,750	36,320
rh95	151	15,147	14,560	5,334	2,230	38,790
rh98	151	16,405	15,760	5,484	2,750	40,250
rh100	151	17,870	17,180	5,656	3,740	41,630
Campo	151	12,599	15,000	1,628	9,000	16,000
Elevación	151	325,935	325,593	6,197	312,281	340,737

De acuerdo a los parámetros evaluados en la tabla 4, rh95 muestra una menor variación en los valores medianos de las diferencias de rh de los puntos GEDI. Sin embargo, habría que medir y comparar con otras formaciones vegetales para deducir la eficacia del parámetro de sensibilidades. Ello de

bido, a la estructura vertical simple (por ejemplo, un número bajo de estratos verticales), que permite una mejor penetración del haz a través del dosel, o a la homogeneidad de la cobertura del dosel sobre el sitio de estudio. Según estudios reportados (Dubayah et al. 2020; Healey et al. 2020; Hofton et al. 2020; Adrah et al. 2021; Di Tommaso et al. 2021; Kacic et al. 2021; Dubayah et al. 2022; Jiang et al. 2022; Kacic y Kuenzer 2022; Lahssini et al. 2022; Stitt

et al. 2022; Dwiputra et al. 2023; Hoffrén et al. 2023; Kacic et al. 2023; Torresani et al. 2023; Zhou et al. 2023); las sensibilidades en los bosques de hojas aciculares, la cobertura media del dosel es de alrededor del 60%, y la mayoría de los datos se sitúan entre el 40% y el 90%. Para los bosques latifoliados y mixtos, la distribución de la cobertura del dosel es bimodal, siendo la primera más frecuente una cobertura del dosel de aproximadamente el 90% y la segunda de aproximadamente el 30%.

4.1.3 Modelo de la altura del dosel basado en Random Forest de la combinación de datos GEDI nivel 2A con Sentinel-1, -2 y elevación digital

La generación del modelo considero para el entrenamiento el 60% de la muestra. El modelo de la altura del dosel de 2022 (percentil 95 de las métricas de altura relativa GEDI L2A) presenta una concordancia general que asciende a un RMSE de 3,466 m. El coeficiente de determinación (R²) indica una relación lineal positiva, donde el 69,40% del modelo esta explicado por las variables independientes.

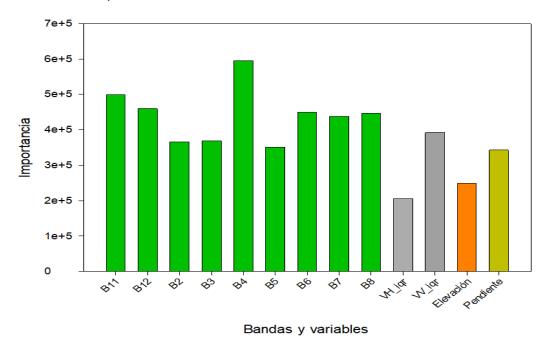


Figura 7. Importancia de variables en la generación del modelo de la altura del dosel.

Para comprender mejor la importancia de la variable de las características predictivas, las puntuaciones para el modelo de altura del dosel de 2022 se muestran en la figura 7. La información espectral de Sentinel-2 en la longitud de onda Red (B4) tiene las puntuaciones de mayor importancia. La información de pendiente derivada de SRTM se clasifica como la octava variable más alta, en contraste con las métricas de Sentinel-1 que alcanzan las puntuaciones de sexta para la polarización VV y la más baja para la polarización VH. Por otro lado, debe considerarse lo propuesto por Kacic et al. (2021), donde la fracción de muestra también permiten obtener correlaciones positivas para la precisión de los datos. Por lo tanto, un mayor número de variables y fracciones elevadas de muestras para el entrenamiento del modelo mejoran la precisión del modelo.

La prueba del modelo considero el 40% de la muestra. La validación del modelo de la altura del dosel de 2022 (percentil 95 de las métricas de altura relativa GEDI L2A) presenta una concordancia general que asciende a un RMSE de 3,522 m. El coeficiente de determinación (R²) indica una relación lineal positiva, donde el 59,20% del modelo esta explicado por las variables independientes.

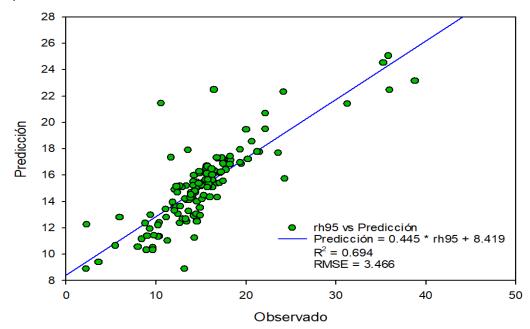


Figura 8. Datos de entrenamiento de la predicción versus datos observados.

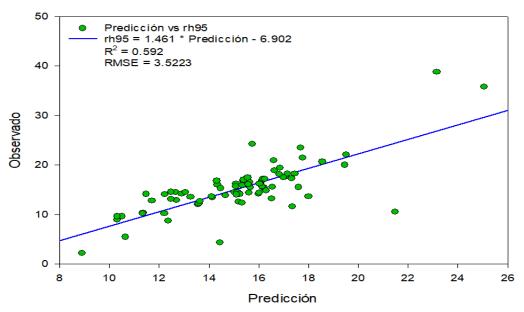


Figura 9. Datos de prueba de la predicción versus datos observados.

El estudio muestra como las formas de onda GEDI pueden distinguir la altura de la plantación de la T. grandis, considerando que GEDI fue diseñado para monitorear bosques, sin embargo, se desconoce si el instrumento sería capaz de resolver las diferencias de altura con la misma precisión en diferentes tipos de vegetación. El entrenamiento en un clasificador de bosque aleatorio para el área de estudio para el área de estudio utilizando métricas de GEDI rh como características, y comparados este modelo con un clasificador de bosque aleatorio de referencia entrenado con coeficientes armónicos de Sentinel-1, -2 y modelos de elevación digital.

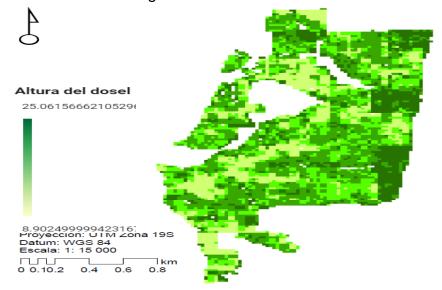


Figura 10. Modelo de la altura del dosel basado en Random Forest de la combinación de datos GEDI nivel 2A con Sentinel-1, -2 y elevación digital.

La altura del dosel modelada varía de 8,890 a 25,06 m, con un valor medio de aproximadamente 15,39 m (Figura 8). La alta resolución geométrica de 10 m permite la identificación de objetos y una mejor caracterización del área de la plantación. Una observación general es que la altura del dosel modelada (Figura 8), es el aumento gradual de la cobertura total del dosel desde el noroeste hacia el este.

Estudiamos las selecciones de características basadas en el modelo de bosque aleatorio para comprender mejor la capacidad de predicción. Observamos que las características más significativas estuvieron dominadas por las bandas ópticas (Figura 7) y son indicadores óptimos bien conocidos para la estimación cuantitativa de variables biofísicas en las cubiertas vegetales en estudios realizados (Di Tommaso et al. 2021; Dorado-Roda et al. 2021; Kacic et al. 2021; Potapov et al. 2021; Kacic et al. 2023; Rajab Pourrahmati et al. 2023).

Curiosamente, se detectó un indicador de radar en los elementos seleccionados. Esto se debió principalmente al predominio de valores de biomasa de alto rango en nuestros sitios de estudio. El Sentinel-1 de banda C (~5,5 cm) tienen una limitación en términos de penetración en el bosque, debido a que las señales de radar disminuyen con la presencia de vegetación (Di Tommaso et al. 2021; Kacic et al. 2021)

La investigación utilizo la técnica del bosque aleatorio debido a su capacidad para proporcionar características importantes y su posición en la comunidad de teledetección. El algoritmo de RF puede determinar la importancia de varias características en la predicción de la altura del bosque asignando a cada característica una puntuación de importancia. Esta información se utilizó para seleccionar las características más impactantes y estimar la altura del dosel a través de datos GEDI, lo que resulta en menos datos para procesar e interpretación. El algoritmo de RF es especialmente ventajoso para la selección de características porque puede manejar grandes conjuntos de datos, algo común en la detección remota, e identificar de manera efectiva las características cruciales incluso en datos de alta dimensión, mejorando la interpretabilidad de los resultados. El estudio empleo un subconjunto óptimo

de características para mejorar la eficiencia computacional del enfoque de bosque aleatorio (Silva et al. 2019a; Long et al. 2020; Di Tommaso et al. 2021; Kacic et al. 2021; Potapov et al. 2021; Schlund et al. 2022; Xi et al. 2022; Dwiputra et al. 2023; Rajab Pourrahmati et al. 2023; Zhou et al. 2023).

Los atributos de la estructura de la vegetación modelada presentan correlaciones espaciales positivas que siguen las condiciones climáticas de una plantación de *T. grandis* en la Amazonia de Madre de Dios (Tahuamanu), es decir, alturas de dosel más bajas y coberturas de dosel más escasas en los campos agrícolas en comparación con la vegetación circundante no deforestada (Bosque natural y plantaciones). La integración de datos de altura de la vegetación basados en GEDI en combinación con Sentinel-1, -2 y elevación digital han mejorado las clasificaciones. Adicionalmente, factores a lo largo de los principales ríos de la de la Amazonia peruana, las áreas ribereñas destacan que la disponibilidad de agua, en combinación con suelos propensos a inundaciones, promueven una mayor altura y densidad de la vegetación. Sin embargo, hasta donde se conoce, no existen investigaciones sobre la estructura forestal basadas en técnicas de teledetección en la Amazonia de Madre de Dios (Silva et al. 2019a; Long et al. 2020; Di Tommaso et al. 2021; Kacic et al. 2021; Potapov et al. 2021; Schlund et al. 2022; Xi et al. 2022; Dwiputra et al. 2023; Rajab Pourrahmati et al. 2023; Zhou et al. 2023).

Una mayor precisión del modelo podría verse obstaculizada, por un lado, por la huella GEDI de 25 m, que es una señal de una estructura de vegetación mixta, que por otro lado está representada por un único píxel Sentinel-1 y -2. En otras palabras, los predictores del modelo solo capturan una fracción de las muestras GEDI, lo que limita la representación espectral de los predictores del modelo. Además, los estudios de Dorado-Roda et al. (2021) (bosques mediterráneos europeos) y Kacic et al. (2023) (Alemania) destacan que existen ciertas limitaciones en las estimaciones de altura del dosel derivadas de GEDI y en la georreferenciación. Pero las limitaciones en la altura del dosel derivadas del GEDI están específicamente relacionadas con estructuras forestales altamente estratificadas, que representan sólo una proporción

menor de los bosques (Healey et al. 2020; Hofton et al. 2020; Di Tommaso et al. 2021; Potapov et al. 2021; Xi et al. 2022; Kacic et al. 2023; Li et al. 2023). Otro punto importante sobre el estudio presentado es que hay un menor número de muestras GEDI disponibles en las partes occidental y oriental y, por lo tanto, conjuntos de muestras menos equilibrados espacial y temporalmente. Estos modelos podrían no ser tan precisos como los modelos con conjuntos de muestras equilibrados espacial y temporalmente, ya que, por un lado, no se muestrea toda la gama de estructuras de la vegetación debido a una dispersión heterogénea de la muestra (Silva et al. 2019a; Healey et al. 2020; Hofton et al. 2020; Di Tommaso et al. 2021; Kacic et al. 2021; Potapov et al. 2021; Kacic y Kuenzer 2022; Schlund et al. 2022; Xi et al. 2022; Kacic et al. 2023; Li et al. 2023; Zhou et al. 2023).

4.2 Métricas de datos GEDI 4B en una plantación de *Tectona* grandis L.

Para evaluar la incertidumbre estadística de la densidad de biomasa, se comparó el conjunto independiente de muestras (observaciones) del GEDI con los datos de campo calculando el Correlación de Pearson (r), el coeficiente de determinación (R²), Error cuadrático medio (RMSE, Mg/ha), Error cuadrático medio relativo (rRMSE, %), Bias (Mg/ha) y rBias (%). Dado que el cálculo se realizó bajo el enfoque del atributo GEDI, los criterios de error se calcularon y agregaron como valores medios (Tabla 6). La relación entre los datos de campo y AGBD (MU) en términos de correlación (r) arrojó el valor de r Pearson de 0,657. El valor de RMSE fue de 255,530 Mg/ha y en términos de valores de rRMSE con 100,191. Mientras que el valor de sesgo fue -106,504 Mg/ha y %sesgo con -41,68% (Tabla 6).

Tabla 6. Densidad de biomasa de la plantación (AGBD) de GEDI en términos de r, R2, RMSE, rRMSE, Bias y rBias

Ecuación	Correlación de Pearson (r)	El coeficiente de determinación ajustado (R²)	Error cuadrático medio (RMSE, Mg/ha)	Error cuadrático medio relativo (rRMSE, %)	Bias (Mg/ha)	rBias (%)
AGBD=7,35 ^{0,16*d}	0,657	0,4313	255,530	100,191	-106,504	-41,680

La misión GEDI fue diseñada específicamente para recuperar la estructura de la vegetación y AGBD en una amplia gama de condiciones ambientales suficientes para cumplir con los requisitos de mapeo de AGBD (Bente et al. 2019). Se ha demostrado que las alturas del dosel fueron más precisas en el rango de cobertura del dosel del 50 al 100%. Esto confirma que, en condiciones de cobertura de dosel baja (<50%), es más probable que las energías de forma de onda completa (FW) de GEDI se reflejen desde la superficie del terreno que, desde el dosel, lo que impide una estimación precisa de la altura del dosel (Galidaki et al. 2017; Rodríguez et al. 2018; Parente et al. 2019; Duncanson et al. 2020; Dorado-Roda et al. 2021; Duncanson et al. 2022; Kacic y Kuenzer 2022; Hoffrén et al. 2023). Por el contrario, para las condiciones de cubierta de dosel densa (CC > 90%), la señal reflejada por el terreno recibida por el sensor GEDI es más débil que la señal del dosel, lo que genera errores en las mediciones de la altura del dosel. Por lo tanto, las métricas de rh pueden estar sesgadas, particularmente en condiciones extremas (bajas y altas) de cobertura del dosel (Galidaki et al. 2017; Rodríguez et al. 2018; Parente et al. 2019; Duncanson et al. 2020; Dorado-Roda et al. 2021; Duncanson et al. 2022; Kacic y Kuenzer 2022; Xi et al. 2022; Zhang et al. 2022; Hoffrén et al. 2023). Por otro lado, en un ecosistema de árboles dispersos, con la T. grandis, un desplazamiento horizontal de entre 10 y 20 m puede dar como resultado errores de altura de varios metros, afectando la calibración y validación del modelo a nivel de huella GEDI (Silva et al. 2019a; Kacic et al. 2023).

Con respecto al ejercicio de medir la precisión de GEDI AGBD utilizando ecuaciones alometricas del nivel de huella de GEDI, los resultados sugirieron que las estimaciones de datos de campo-AGBD podrían usarse como base para generar modelos AGBD robustos derivados de GEDI en plantaciones en la Amazonia (Silva et al. 2019a; Kacic et al. 2021; Kacic et al. 2023). Para cualquier estimación de biomasa espacial, la validación utilizando datos de referencia es un desafío, dado que casi todos los datos de referencia tendrán errores (Kacic et al. 2021; Kacic y Kuenzer 2022; Kacic et al. 2023). Los resultados del presente estudio mostraron que los modelos AGBD derivados

de GEDI basados en la métrica rh superior representan una descripción cuantitativa mediana de la estructura de una plantación en la Amazonia de Madre de Dios en el nivel GEDI de huella de 25 m de diámetro utilizando estimaciones de AGBD comparadas con datos de campo (Silva et al. 2019a; Kacic et al. 2021; Kacic et al. 2023). En términos de RMSE (255,530 Mg/ha) y rRMSE (100,191 Mg/ha) para *T. grandis* la precisión no es adecuada (Silva et al. 2019a). En términos de rBias, existe una variación considerable respecto a los datos de campo (sesgo% = -41,68%) (Silva et al. 2019a).

En ese mismo sentido, Kacic et al. (2021) sostiene que el análisis de sensibilidad respecto a los datos de campo (estimado utilizando valores R²) responde a la variación de los valores de cada parámetro, por ejemplo, para el caso del Gran Chaco Americano, que es la segunda región más grande de cubierta forestal continua en América del Sur después de la Selva Amazónica, el número de árboles influyo en la precisión, donde el ajuste optimo es de aproximadamente 250 árboles, valor que difiere del estudio que comprendió una superposición de 194. Asimismo, el análisis de sensibilidad revela que, para la población mínima de hojas, no podar los árboles de decisión, es decir, permitir poblaciones mínimas de hojas bajas, da como resultado la mayor precisión del modelo (hasta 57%) que puede inferir en la densidad de Biomasa.

4.2.1 Densidad de biomasa con datos GEDI nivel 4B

La tabla 7 muestra la relación entre la diferencia de los datos de campo y los diferentes grupos de sensibilidad del haz GEDI. Dado que el parámetro de sensibilidad del haz proporciona una estimación de la cobertura máxima del dosel a través de la cual GEDI puede detectar el suelo con una probabilidad, se espera que con una mayor sensibilidad se puedan penetrar cubiertas de dosel más densas. Si observamos la tabla 7, la mediana de la AGBD GEDI 4B reporta 165,860 Mg/ha respecto a los datos de campo de 102,279 Mg/ha. A nivel de valores totales muestra una diferencia de -22431,873 Mg. Mostrando los datos GEDI una subestimación de la densidad de biomasa respecto a los datos de campo (Tabla 7).

Tabla 7. Estadística descriptiva de la distribución de la densidad de biomasa (AGBD) de GEDI

Variable	Obs	Total (Mg)	Promedio (Mg/ha)	Mediana (Mg/ha)	Desviación estándar
Campo	194	53814,099	255,043	102,279	26,673
AGBD GEDI	194	31382,226	161,764	165,860	16,989

De acuerdo a los parámetros evaluados en la tabla 7, AGBD muestra una variación considerable del total de densidad de biomasa en campo. Sin embargo, habría que medir y comparar con otras formaciones vegetales para deducir la eficacia del parámetro de sensibilidad de MU de GEDI 4B. Ello debido, a la estructura vertical simple (por ejemplo, un número bajo de estratos verticales), que permite una mejor penetración del haz a través del dosel, o a la homogeneidad de la cobertura del dosel sobre el sitio de estudio. Según estudios reportados (Dubayah et al. 2020; Healey et al. 2020; Hofton et al. 2020; Adrah et al. 2021; Di Tommaso et al. 2021; Kacic et al. 2021; Dubayah et al. 2022; Jiang et al. 2022; Kacic y Kuenzer 2022; Lahssini et al. 2022; Stitt et al. 2022; Dwiputra et al. 2023; Hoffrén et al. 2023; Kacic et al. 2023; Torresani et al. 2023; Zhou et al. 2023); las sensibilidades en los bosques de hojas aciculares, la cobertura media del dosel es de alrededor del 60%, y la mayoría de los datos se sitúan entre el 40% y el 90%. Para los bosques latifoliados y mixtos, la distribución de la cobertura del dosel es bimodal, siendo la primera más frecuente una cobertura del dosel de aproximadamente el 90% y la segunda de aproximadamente el 30%.

4.2.2 Modelo de la densidad de biomasa basado en Random Forest de la combinación de datos GEDI nivel 4B con Sentinel-1, -2 y modelo de elevación digital

La generación del modelo considero para el entrenamiento el 60% de la muestra. El modelo de AGBD de 2022 (MU de GEDI L4B) presenta una concordancia general que asciende a un RMSE de 12,68 Mg/ha. El coeficiente de determinación (R²) indica una relación lineal positiva, donde el 52,0% del modelo esta explicado por las variables independientes.

Para comprender mejor la importancia de la variable de las características predictivas, las puntuaciones para el modelo de AGBD para la plantación del

2022 se muestra en la figura 12. La información de elevación derivada de SRTM se clasifica como la variable más importante. La banda espectral de Sentinel-2 en la longitud de onda Red Edge 3 (B7) tiene la puntuación como la segunda más importante, mientras que la longitud de onda Red (B4) presenta la puntuación más baja. En contraste con las métricas de Sentinel-1 que alcanzan las puntuaciones de la cuarta para la polarización VV y en menor proporción la polarización VH. Por otro lado, debe considerarse lo propuesto por Kacic et al. (2021), donde la fracción de muestra también permiten obtener correlaciones positivas para la precisión de los datos. Por lo tanto, un mayor número de variables y fracciones elevadas de muestras para el entrenamiento del modelo mejoran la precisión del modelo.

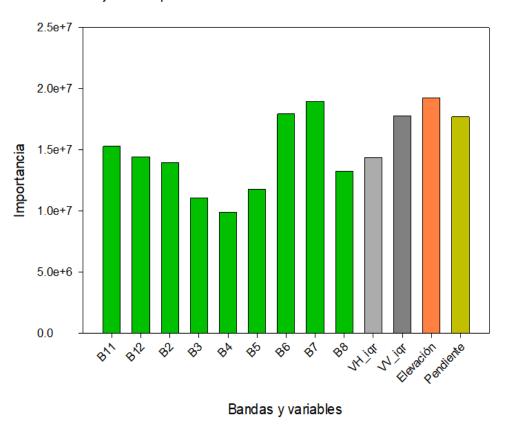


Figura 11. Importancia de variables en la generación del modelo de AGBD.

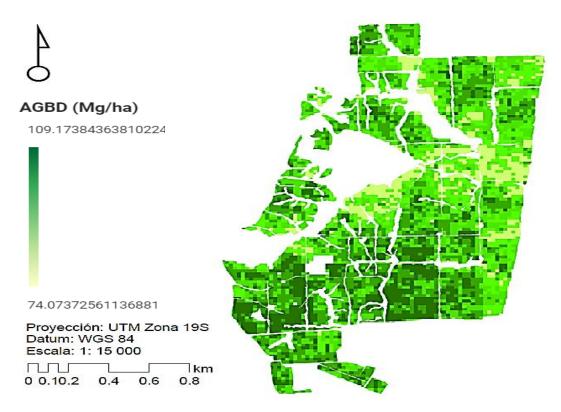


Figura 13. Modelo de la densidad de biomasa basado en Random Forest de la combinación de datos GEDI nivel 4B con Sentinel-1, -2 y modelo de elevación digital.

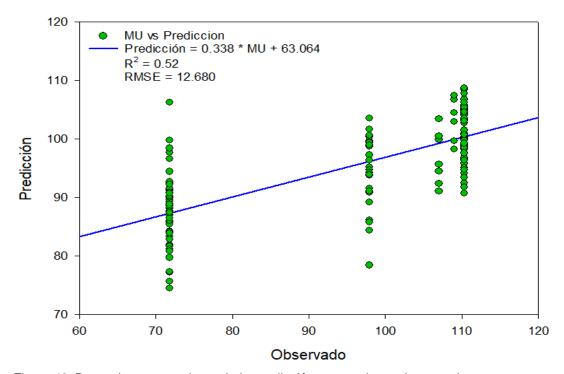


Figura 12. Datos de entrenamiento de la predicción versus datos obeservados.

La prueba del modelo considero el 40% de la muestra. La validación del modelo de la AGBD de 2022 (MU de GEDI L4B) presenta una concordancia general que asciende a un RMSE de 14,339 Mg/ha. El coeficiente de determinación (R²) indica una relación lineal positiva débil, donde el 27,70% del modelo esta explicado por las variables independientes.

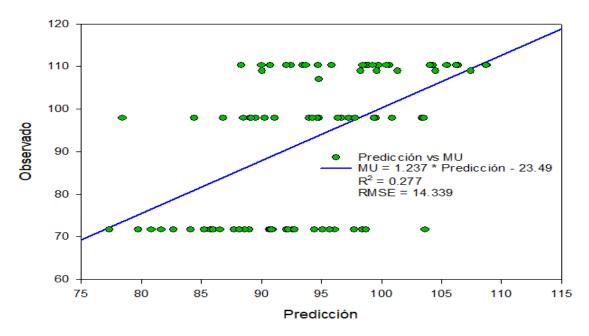


Figura 14. Datos de validación de la predicción versus datos observados.

El estudio muestra como las formas de onda GEDI pueden determinar la AGBD de la plantación de la *T. grandis*, considerando que GEDI fue diseñado para monitorear bosques, sin embargo, se desconoce si el instrumento sería capaz de resolver las diferencias de la estructura de los diferentes tipos de vegetación.

El entrenamiento en un clasificador de bosque aleatorio para el área de estudio utilizando métricas de GEDI MU como características, y comparados este modelo con un clasificador de bosque aleatorio de referencia entrenado con coeficientes armónicos de Sentinel-1, -2 y modelos de elevación digital, proporciono una AGBD modelada que vario de 74,07 MG/ha a 109,17 Mg/ha, con un valor medio de aproximadamente 93,14 Mg/ha (Figura 12). La alta resolución geométrica de 10 m permite la identificación de objetos y una mejor caracterización del área de la plantación. Una observación general de la

AGBD modelada (Figura 12), es el aumento gradual de la AGBD desde el norte al sur.

En general, el modelo de AGDB basados en GEDI 4B esta ligeramente sesgados en intervalos más bajos respecto a los datos de campo, lo que significa que los modelos AGBD derivados de GEDI subestimaron los AGBD en condiciones de cobertura de dosel baja, en nuestro caso la plantación de T. grandis. A pesar de ello, modelando mediante RF la fusión de datos GEDI con Sentinel-1, -2 y SRTM arrojo un valor ligeramente superior (R² = 0,52) a los obtenidos por Silva et al. (2021) (R² que oscila entre 0,46 y 0,51) en el condado de Sonoma, California, Estados Unidos; donde la vegetación del área de estudio se compone principalmente de coníferas, bosques caducifolios y mixtos, humedales, hierbas y arbustos con un gran gradiente de estructura forestal y AGBD, y sirven como análisis de referencia de la dinámica de la estructura forestal para plantaciones en la Amazonia de Madre de Dios. Los esfuerzos recientes del equipo científico de GEDI para ampliar la misión GEDI (final de la adquisición de datos en marzo de 2023) respaldarían en gran medida el análisis de la dinámica forestal, como la recuperación después de una perturbación o el mapeo global de AGBD (Silva et al. 2019a; Kacic et al. 2021; Silva et al. 2021; Kacic y Kuenzer 2022; Kacic et al. 2023). Además, el análisis multitemporal de la estructura forestal tal como se presenta en el presente y otros estudios, modelando específicamente las condiciones históricas de la estructura forestal (por ejemplo, basados e imágenes de data histórica) mejoraría la comprensión de las emisiones de carbono a largo plazo y la dinámica del equilibrio en el contexto de la historia del uso de la tierra (Galidaki et al. 2017; Silva et al. 2019a; Duncanson et al. 2020; Di Tommaso et al. 2021; Dorado-Roda et al. 2021; Kacic et al. 2021; Silva et al. 2021; Duncanson et al. 2022; Kacic y Kuenzer 2022; Lahssini et al. 2022; Xi et al. 2022; Zhang et al. 2022; Kacic et al. 2023; Ngo et al. 2023; Rajab Pourrahmati et al. 2023; Torresani et al. 2023; Zhou et al. 2023). Además, la derivación de características complementarias de la estructura forestal también respalda el análisis de la biodiversidad, ya que los conceptos populares recientes de teledetección (diversidad espectral) se basan principalmente en información

multiespectral (Dubayah et al. 2020; Duncanson et al. 2020; Dubayah et al. 2022; Hoffrén et al. 2023; Kacic et al. 2023).

4.3 Cobertura de suelo en una plantación de *Tectona grandis* L. basado en Random Forest mediante la combinación de datos GEDI nivel 2A, Sentinel-1 y Sentinel-2

La altura del dosel modelada con RF mediante la combinación de datos GEDI 2A con Sentinel-1, -2 y SRTM vario de 8,890 a 25,06 m, con un valor medio de aproximadamente 15,39 m (Figura 8). El producto permitió clasificar la cobertura del suelo en base a la densidad de la vegetación propuesto por Brown et al. (2022), mostrando la zona arbolada con baja densidad con 0,1013 ha (0,05%), zonas arboladas de densidad media con 79,2118 ha (38,15%) y zonas arboladas de densidad alta con 128,2972 ha (61,80%).

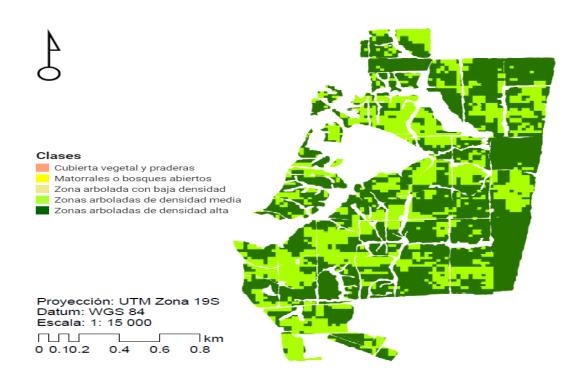


Figura 15. Cobertura de suelo en una plantación de *Tectona grandis* L. basado en Random Forest mediante la combinación de datos GEDI nivel 2A, Sentinel-1 y Sentinel-2.

CONCLUSIONES

Este estudio evaluó la influencia de parámetros de adquisición y procesamiento de señales en la estimación de la altura del dosel, densidad de biomasa y cobertura terrestre en una plantación de *Tectona grandis* L. mediante la combinación de GEDI con Sentinel (-1 y -2) y modelo de elevación digital en la Amazonia de Madre de Dios para 2022, se concluye:

Los resultados evidenciaron que la relación de la precisión en la altura del dosel de los productos L2A rh95 con datos de campo fue la mejor en términos estadísticos.

De acuerdo a los parámetros evaluados, rh95 muestra una menor variación en los valores medianos de las diferencias de rh de los puntos GEDI, con 14,56 m respecto a los más cercanos de rh98 y rh100 (15,76 m y 17,18 m).

La generación del modelo de la altura del dosel basado en Random Forest presento una concordancia general que asciende a un RMSE de 3,466 m y un coeficiente de determinación (R²) con una relación lineal positiva de 69,40% con un valor medio de aproximadamente 15,39 m. La construcción del modelo reporto a la banda espectral de Sentinel-2 en la longitud de onda RED (B4) como la variable con mayor puntuación, mientras que la pendiente derivada de SRTM se clasifico como la octava variable más alta. Finalmente, la longitud de onda Red (B4) presento la menor puntuación.

La relación entre los datos de campo y AGBD (MU) en términos de correlación (r) arrojó el valor de r Pearson (0,657) aceptable, sin embargo, los valores de RMSE, rRMSE, sesgo y %sesgo presentaron variabilidad.

La densidad de biomasa (AGBD) muestra una variación considerable respecto a los datos de campo (-22431,873 Mg/ha).

La generación del modelo de la densidad de biomasa basado en Random Forest presento una concordancia general que asciende a un RMSE de 12,68 Mg/ha y un coeficiente de determinación (R²) con una relación lineal positiva de 52,00%. La construcción del modelo mostro a la elevación derivada de SRTM como la variable mas importante, seguida de la banda espectral de

Sentinel-2 en la longitud de onda Red Edge 3 (B7) como la segunda con mas puntucion, mientras que la longitud de onda Red (B4) presenta la mas baja.

A nivel de tipos de cobertura de suelo en base a la altura del dosel modelada con RF, presento a la categoria de zonas arboladas de densidad alta con un 61,80%.

Se rechaza la hipótesis nula y se acepta la alterna, donde; la incorporación de datos de la estructura de la vegetación mediante datos GEDI combinados con Sentinel-1, -2 y modelos de elevación digital puede aumentar la precisión en la estimación de la altura del dosel y densidad de biomasa en una plantación de *Tectona grandis* L. en la Amazonia de Madre de Dios, año 2022.

SUGERENCIAS

En este estudio, demostramos que se pueden usar tres métricas similares a GEDI y la regresión lineal múltiple para estimar la altura superior del dosel y la densidad de biomasa al nivel de plantaciones en la Amazonia de Madre de Dios. Sin embargo, esperamos que estos resultados para el modelado de atributos forestales estimulen más investigaciones y aplicaciones de GEDI no solo en plantaciones sino también en formaciones naturales de la Amazonia.

REFERENCIAS BIBLIOGRÁFICAS

ADRAH, E., MOHD JAAFAR, W. S. W., BAJAJ, S., OMAR, H., LEITE, R. V., SILVA, C. A., CARDIL, A. Y MOHAN, M. Analyzing canopy height variations in secondary tropical forests of Malaysia using NASA GEDI. IOP Conference Series: Earth and Environmental Science, 2021/10/01 2021, 880(1), 012031. doi:https://doi.org/10.1088/1755-1315/880/1/012031

ALARCON-AGUIRRE, G., CANAHUIRE, R. R., GUEVARRA, F. M. G., RODRIGUEZ, L., GALLEGOS, L. E. Y GARATE-QUISPE, J. Dinámica de la pérdida de bosques en el sureste de la Amazonia peruana: un estudio de caso en Madre de Dios. Ecosistemas, 2021, 30(2), 2175-2175. doi:https://doi.org/10.7818/ECOS.2175

ALARCON-AGUIRRE, G., MIRANDA FIDHEL, R. F., RAMOS ENCISO, D., CANAHUIRE-ROBLES, R., RODRIGUEZ-ACHATA, L. Y GARATE-QUISPE, J. Burn Severity Assessment Using Sentinel-1 SAR in the Southeast Peruvian Amazon, a Case Study of Madre de Dios. *Fire* [Type of Work]. 2022, vol. 5, no. 4. ISSN 2571-6255. doi:https://doi.org/10.3390/fire5040094.

ALARCÓN-AGUIRRE, G., SAJAMI QUISPE, E., VÁSQUEZ ZAVALETA, T., PONCE TEJADA, L. V., RAMOS ENCISO, D., RODRÍGUEZ ACHATA, L. Y GARATE-QUISPE, J. Vegetation dynamics in lands degraded by gold mining in the southeastern Peruvian Amazon. Trees, Forests and People, 2023/03/01/2023, 11, 100369. doi:https://doi.org/10.1016/j.tfp.2023.100369

ALARCÓN, G., DÍAZ, J., VELA, M., GARCÍA, M. Y GUTIÉRREZ, J. Deforestación en el sureste de la amazonia del Perú entre los años 1999-2013; caso Regional de Madre de Dios (Puerto Maldonado–Inambari). Journal of High Andean Research, 2016, 18(3), 319-330. doi:http://dx.doi.org/10.18271/ria.2016.221

ALARCON, G., ZEVALLOS, P. A., QUISPE, R., RAMOS, D. Y GARATE-QUISPE, J. S. Valor de conservación de un bosque en el sureste de la Amazonia Peruana: El caso de Madre de Dios. Revista Ecosistemas, 2020, 29(3). doi: https://doi.org/10.7818/ECOS.1947

ANJI-REDDY, M. Geographical Information System. 3rd Edition, BS Publication, Hyderabad, 2010.

BARAY, H. L. Á. *Introducción a la metodología de la investigación*. Edtion ed.: Juan Carlos Martínez Coll, 2006. ISBN 8469019996.

BENTE, E., SHANE, W., ZACHARY, D., PETE, D., DEMETRIOS, P., BARRY, C., PETE, M., JOHN, H., PATRICK, T., LUIS, R.-I. Y BRYAN, B. Global Ecosystem Dynamics Investigation (GEDI) instrument alignment and test. In *Proc.SPIE.* 2019, vol. 11103, p. 1110308.

BOOYSEN, R., GLOAGUEN, R., LORENZ, S., ZIMMERMANN, R. Y NEX, P. A. M. Geological Remote Sensing. In D. ALDERTON Y S.A. ELIAS eds. *Encyclopedia of Geology (Second Edition)*. Oxford: Academic Press, 2021, p. 301-314.

BREIMAN, L. Bagging predictors. Machine learning, 1996/08/01 1996, 24(2), 123-140. doi:10.1007/BF00058655

BREIMAN, L. Random forest, vol. 45. Mach Learn, 2001a, 1. doi:10.1017/CBO9781107415324.004

BREIMAN, L. Random Forests. Machine learning, 2001/10/01 2001b, 45(1), 5-32. doi:10.1023/A:1010933404324

BROKAW, N. Vertical structure. Maintaining biodiversity in forest ecosystems, 1999.

BROWN, C. F., BRUMBY, S. P., GUZDER-WILLIAMS, B., BIRCH, T., HYDE, S. B., MAZZARIELLO, J., CZERWINSKI, W., PASQUARELLA, V. J., HAERTEL, R., ILYUSHCHENKO, S., SCHWEHR, K., WEISSE, M., STOLLE,

F., HANSON, C., GUINAN, O., MOORE, R. Y TAIT, A. M. Dynamic World, Near real-time global 10 m land use land cover mapping. Scientific data, 2022/06/09 2022, 9(1), 251. doi:10.1038/s41597-022-01307-4

CABALLERO, J., MESSINGER, M., ROMÁN-DAÑOBEYTIA, F., ASCORRA, C., FERNANDEZ, L. E. Y SILMAN, M. Deforestation and forest degradation due to gold mining in the Peruvian Amazon: A 34-year perspective. Remote Sensing, 2018, 10(12), 1903.

CASTRO, F. El proceso de investigación y su esquema de elaboración. Editorial Uyapar. Caracas, 2003.

CAZAU, P. Introducción a la investigación en ciencias sociales. Lima. Editorial Universidad Ricardo Palma, 2006.

CHUVIECO, E. Fundamentals of satellite remote sensing: An environmental approach. Edition ed.: CRC press, 2016. ISBN 1498728073.

CLARK, P. Y NIBLETT, T. Machine learning. In.: Boston: Kluwer Academic Publishers, 1992.

CORTE, A. P., DA CUNHA NETO, E. M., REX, F. E., SOUZA, D., BEHLING, A., MOHAN, M., SANQUETTA, M. N., SILVA, C. A., KLAUBERG, C., SANQUETTA, C. R., VERAS, H. F., DE ALMEIDA, D. R., PRATA, G., ZAMBRANO, A. M., TRAUTENMÜLLER, J. W., DE MORAES, A., KARASINSKI, M. A. Y BROADBENT, E. N. High-Density UAV-LiDAR in an Integrated Crop-Livestock-Forest System: Sampling Forest Inventory or Forest Inventory Based on Individual Tree Detection (ITD). *Drones* [Type of Work]. 2022, vol. 6, no. 2. ISSN 2504-446X. doi:10.3390/drones6020048.

DELEGIDO, J., VERRELST, J., ALONSO, L. Y MORENO, J. Evaluation of Sentinel-2 Red-Edge Bands for Empirical Estimation of Green LAI and Chlorophyll Content. *Sensors* [Type of Work]. 2011, vol. 11, no. 7, pp. 7063-7081. ISSN 1424-8220. doi:10.3390/s110707063.

DI TOMMASO, S., WANG, S. Y LOBELL, D. B. Combining GEDI and Sentinel-2 for wall-to-wall mapping of tall and short crops. Environmental Research Letters, 2021/11/18 2021, 16(12), 125002. doi:10.1088/1748-9326/ac358c

DORADO-RODA, I., PASCUAL, A., GODINHO, S., SILVA, C. A., BOTEQUIM, B., RODRÍGUEZ-GONZÁLVEZ, P., GONZÁLEZ-FERREIRO, E. Y GUERRA-HERNÁNDEZ, J. Assessing the Accuracy of GEDI Data for Canopy Height and Aboveground Biomass Estimates in Mediterranean Forests. *Remote Sensing* [Type of Work]. 2021, vol. 13, no. 12. ISSN 2072-4292. doi:10.3390/rs13122279.

DUBAYAH, R., ARMSTON, J., HEALEY, S. P., BRUENING, J. M., PATTERSON, P. L., KELLNER, J. R., DUNCANSON, L., SAARELA, S., STÅHL, G., YANG, Z., TANG, H., BLAIR, J. B., FATOYINBO, L., GOETZ, S., HANCOCK, S., HANSEN, M., HOFTON, M., HURTT, G. Y LUTHCKE, S. GEDI launches a new era of biomass inference from space. Environmental Research Letters, 2022/08/18 2022, 17(9), 095001. doi:10.1088/1748-9326/ac8694

DUBAYAH, R., BLAIR, J. B., GOETZ, S., FATOYINBO, L., HANSEN, M., HEALEY, S., HOFTON, M., HURTT, G., KELLNER, J., LUTHCKE, S., ARMSTON, J., TANG, H., DUNCANSON, L., HANCOCK, S., JANTZ, P., MARSELIS, S., PATTERSON, P. L., QI, W. Y SILVA, C. The Global Ecosystem Dynamics Investigation: High-resolution laser ranging of the Earth's forests and topography. Science of Remote Sensing, 2020/06/01/2020, 1, 100002. doi:https://doi.org/10.1016/j.srs.2020.100002

DUNCANSON, L., KELLNER, J. R., ARMSTON, J., DUBAYAH, R., MINOR, D. M., HANCOCK, S., HEALEY, S. P., PATTERSON, P. L., SAARELA, S., MARSELIS, S., SILVA, C. E., BRUENING, J., GOETZ, S. J., TANG, H., HOFTON, M., BLAIR, B., LUTHCKE, S., FATOYINBO, L., ABERNETHY, K., ALONSO, A., ANDERSEN, H.-E., APLIN, P., BAKER, T. R., BARBIER, N., BASTIN, J. F., BIBER, P., BOECKX, P., BOGAERT, J., BOSCHETTI, L., BOUCHER, P. B., BOYD, D. S., BURSLEM, D. F. R. P., CALVO-

RODRIGUEZ, S., CHAVE, J., CHAZDON, R. L., CLARK, D. B., CLARK, D. A., COHEN, W. B., COOMES, D. A., CORONA, P., CUSHMAN, K. C., CUTLER, M. E. J., DALLING, J. W., DALPONTE, M., DASH, J., DE-MIGUEL, S., DENG, S., ELLIS, P. W., ERASMUS, B., FEKETY, P. A., FERNANDEZ-LANDA, A., FERRAZ, A., FISCHER, R., FISHER, A. G., GARCÍA-ABRIL, A., GOBAKKEN, T., HACKER, J. M., HEURICH, M., HILL, R. A., HOPKINSON, C., HUANG, H., HUBBELL, S. P., HUDAK, A. T., HUTH, A., IMBACH, B., JEFFERY, K. J., KATOH, M., KEARSLEY, E., KENFACK, D., KLJUN, N., KNAPP, N., KRÁL, K., KRŮČEK, M., LABRIÈRE, N., LEWIS, S. L., LONGO, M., LUCAS, R. M., MAIN, R., MANZANERA, J. A., MARTÍNEZ, R. V., MATHIEU, R., MEMIAGHE, H., MEYER, V., MENDOZA, A. M., MONERRIS, A., MONTESANO, P., MORSDORF, F., NÆSSET, E., NAIDOO, L., NILUS, R., O'BRIEN, M., ORWIG, D. A., PAPATHANASSIOU, K., PARKER, G., PHILIPSON, C., PHILLIPS, O. L., PISEK, J., POULSEN, J. R., PRETZSCH, H., RÜDIGER, C., SAATCHI, S., SANCHEZ-AZOFEIFA, A., SANCHEZ-LOPEZ, N., SCHOLES, R., SILVA, C. A., SIMARD, M., SKIDMORE, A., STEREŃCZAK, K., TANASE, M., TORRESAN, C., VALBUENA, R., VERBEECK, H., VRSKA, T., WESSELS, K., WHITE, J. C., WHITE, L. J. T., ZAHABU, E. Y ZGRAGGEN, C. Aboveground biomass density models for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar mission. Remote Sensing of Environment, 2022/03/01/ 2022, 270, 112845. doi:https://doi.org/10.1016/j.rse.2021.112845

DUNCANSON, L., NEUENSCHWANDER, A., HANCOCK, S., THOMAS, N., FATOYINBO, T., SIMARD, M., SILVA, C. A., ARMSTON, J., LUTHCKE, S. B., HOFTON, M., KELLNER, J. R. Y DUBAYAH, R. Biomass estimation from simulated GEDI, ICESat-2 and NISAR across environmental gradients in Sonoma County, California. Remote Sensing of Environment, 2020/06/01/2020, 242, 111779. doi:https://doi.org/10.1016/j.rse.2020.111779

DWIPUTRA, A., COOPS, N. C. Y SCHWARTZ, N. B. GEDI waveform metrics in vegetation mapping—a case study from a heterogeneous tropical forest landscape. Environmental Research Letters, 2023/01/11 2023, 18(1), 015007. doi:10.1088/1748-9326/acad8d

ELIAS, F., FERREIRA, J., LENNOX, G. D., BERENGUER, E., FERREIRA, S., SCHWARTZ, G., MELO, L. D. O., REIS JUNIOR, D. N., NASCIMENTO, R. O. Y FERREIRA, F. N. Assessing the growth and climate sensitivity of secondary forests in highly deforested Amazonian landscapes. Ecology, 2020, 101(3), e02954.

FAO. FRA 2015: Terms and Definitions. In.: Food and Agriculture Organization of the UN Rome, Italy, 2012.

FERNÁNDEZ-MANSO, A., FERNÁNDEZ-MANSO, O. Y QUINTANO, C. SENTINEL-2A red-edge spectral indices suitability for discriminating burn severity. International Journal of Applied Earth Observation and Geoinformation, 2016/08/01/ 2016, 50, 170-175. doi:https://doi.org/10.1016/j.jag.2016.03.005

FRAMPTON, W. J., DASH, J., WATMOUGH, G. Y MILTON, E. J. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS Journal of Photogrammetry and Remote Sensing, 2013/08/01/ 2013, 82, 83-92. doi:https://doi.org/10.1016/j.isprsjprs.2013.04.007

FU, S. Y WANG, L. GPU-based unresolved LBM-DEM for fast simulation of gas-solid flows. Chemical Engineering Journal, 2023/06/01/ 2023, 465, 142898. doi:https://doi.org/10.1016/j.cej.2023.142898

GALIDAKI, G., ZIANIS, D., GITAS, I., RADOGLOU, K., KARATHANASSI, V., TSAKIRI–STRATI, M., WOODHOUSE, I. Y MALLINIS, G. Vegetation biomass estimation with remote sensing: focus on forest and other wooded land over the Mediterranean ecosystem. International journal of remote sensing, 2017/04/03 2017, 38(7), 1940-1966. doi:10.1080/01431161.2016.1266113

GARCÍA-QUINTANA, Y., ARTEAGA-CRESPO, Y., TORRES-NAVARRETE, B., ROBLES-MORILLO, M., BRAVO-MEDINA, C. Y SARMIENTO-ROSERO, A. Ecological quality of a forest in a state of succession based on structural

parameters: A case study in an evergreen Amazonian-Andean forest, Ecuador. Heliyon, 2020/07/01/ 2020, 6(7), e04592. doi:https://doi.org/10.1016/j.heliyon.2020.e04592

GEE. Google Earth Engine. In. Estados Unidos de America, 2021, vol. 2021, p. A planetary-scale platform for Earth science data & analysis - Powered by Google's cloud infrastructure.

GEREMEW, T., GONSAMO, A., ZEWDIE, W. Y PELLIKKA, P. Extrapolation of canopy height and cover metrics of GEDI LiDAR in tropical montane forest ecosystem. African Geographical Review, 2023, 1-17. doi:10.1080/19376812.2023.2164865

GONZÁLEZ-ESTEBAN Y PATRICI CALVO, E. Ethically governing artificial intelligence in the field of scientific research and innovation. Heliyon, 2022/02/01/ 2022, 8(2), e08946. doi:https://doi.org/10.1016/j.heliyon.2022.e08946

GOREMAD Y IIAP. Macro Zonificación Ecológica Económica de Madre de Dios. In G.D.R.N.Y.M. AMBIENTE. Madre de Dios - Perú, 2009, p. 208.

HANDBOOK, T. D. A. The Data Analysis Handbook. In I.E. FRANK Y R. TODESCHINI eds. *Data Handling in Science and Technology.* Elsevier, 1994, vol. 14, p. 1-352.

HEALEY, S. P., YANG, Z., GORELICK, N. Y ILYUSHCHENKO, S. Highly Local Model Calibration with a New GEDI LiDAR Asset on Google Earth Engine Reduces Landsat Forest Height Signal Saturation. *Remote Sensing* [Type of Work]. 2020, vol. 12, no. 17. ISSN 2072-4292. doi:10.3390/rs12172840.

HERNÁNDEZ, R., FERNÁNDEZ, C. Y BAPTISTA, P. Metodología de la Investigación (Quinta edición ed.).(J. Mares Chacón, Ed.) Mexico, México DF. Edtion ed.: McGraw-Hill/Interamericana Editores, SA de CV, 2010.

HOFFRÉN, R., LAMELAS, M. T., DE LA RIVA, J., DOMINGO, D., MONTEALEGRE, A. L., GARCÍA-MARTÍN, A. Y REVILLA, S. Assessing GEDI-NASA system for forest fuels classification using machine learning techniques. International Journal of Applied Earth Observation and Geoinformation, 2023/02/01/ 2023, 116, 103175. doi:https://doi.org/10.1016/j.jag.2022.103175

HOFTON, M. A., BLAIR, J. B., STORY, S., TANG, H., SILVA, C. E., ARMSTON, J. D. Y DUBAYAH, R. GEDI Measurements of Topography, Height and 3D Structure Measurements. In., 2020, vol. 2020, p. B029-003.

HUAMANI, V., ALARCÓN, G., CANAHUIRE, R., HERRERA-MACHACA, M. Y GARATE-QUISPE, J. Natural regeneration of trees and shrubs in degraded areas by gold mining in the Peruvian Amazon. In *Ensino, pesquisa e inovação em botânica*. Ponta Grossa – Paraná – Brasil: Atena Editora, 2021, p. 1-388.

HUANG, X., CAO, Y. Y LI, J. An automatic change detection method for monitoring newly constructed building areas using time-series multi-view high-resolution optical satellite images. Remote Sensing of Environment, 2020, 244, 111802.

ISLAM, S. Y AMIN, S. H. Prediction of probable backorder scenarios in the supply chain using Distributed Random Forest and Gradient Boosting Machine learning techniques. Journal of Big Data, 2020/08/26 2020, 7(1), 65. doi:10.1186/s40537-020-00345-2

JIANG, F., DENG, M., TANG, J., FU, L. Y SUN, H. Integrating spaceborne LiDAR and Sentinel-2 images to estimate forest aboveground biomass in Northern China. Carbon Balance and Management, 2022/09/01 2022, 17(1), 12. doi:10.1186/s13021-022-00212-y

KACIC, P., HIRNER, A. Y DA PONTE, E. Fusing Sentinel-1 and -2 to Model GEDI-Derived Vegetation Structure Characteristics in GEE for the Paraguayan Chaco. Remote Sensing, 2021, 13(24). doi:10.3390/rs13245105

KACIC, P. Y KUENZER, C. Forest Biodiversity Monitoring Based on Remotely Sensed Spectral Diversity— A Review. Remote Sensing, 2022, 14(21). doi:10.3390/rs14215363

KACIC, P., THONFELD, F., GESSNER, U. Y KUENZER, C. Forest Structure Characterization in Germany: Novel Products and Analysis Based on GEDI, Sentinel-1 and Sentinel-2 Data. Remote Sensing, 2023, 15(8). doi:10.3390/rs15081969

KULKARNI, A. D. Y LOWE, B. Random forest algorithm for land cover classification 2016.

LAHSSINI, K., BAGHDADI, N., LE MAIRE, G. Y FAYAD, I. Influence of GEDI Acquisition and Processing Parameters on Canopy Height Estimates over Tropical Forests. *Remote Sensing* [Type of Work]. 2022, vol. 14, no. 24. ISSN 2072-4292. doi:10.3390/rs14246264.

LE QUÉRÉ, C., ANDREW, R. M., CANADELL, J. G., SITCH, S., KORSBAKKEN, J. I., PETERS, G. P., MANNING, A. C., BODEN, T. A., TANS, P. P., HOUGHTON, R. A., KEELING, R. F., ALIN, S., ANDREWS, O. D., ANTHONI, P., BARBERO, L., BOPP, L., CHEVALLIER, F., CHINI, L. P., CIAIS, P., CURRIE, K., DELIRE, C., DONEY, S. C., FRIEDLINGSTEIN, P., GKRITZALIS, T., HARRIS, I., HAUCK, J., HAVERD, V., HOPPEMA, M., KLEIN GOLDEWIJK, K., JAIN, A. K., KATO, E., KÖRTZINGER, A., LANDSCHÜTZER, P., LEFÈVRE, N., LENTON, A., LIENERT, S., LOMBARDOZZI, D., MELTON, J. R., METZL, N., MILLERO, F., MONTEIRO, P. M. S., MUNRO, D. R., NABEL, J. E. M. S., NAKAOKA, S., O'BRIEN, K., OLSEN, A., OMAR, A. M., ONO, T., PIERROT, D., POULTER, B., RÖDENBECK, C., SALISBURY, J., SCHUSTER, U., SCHWINGER, J., SÉFÉRIAN, R., SKJELVAN, I., STOCKER, B. D., SUTTON, A. J., TAKAHASHI, T., TIAN, H., TILBROOK, B., VAN DER LAAN-LUIJKX, I. T., VAN DER WERF, G. R., VIOVY, N., WALKER, A. P., WILTSHIRE, A. J. Y

ZAEHLE, S. Global Carbon Budget 2016. Earth Syst. Sci. Data, 2016, 8(2), 605-649. doi:10.5194/essd-8-605-2016

LEITE, R. V., SILVA, C. A., BROADBENT, E. N., AMARAL, C. H. D., LIESENBERG, V., ALMEIDA, D. R. A. D., MOHAN, M., GODINHO, S., CARDIL, A., HAMAMURA, C., FARIA, B. L. D., BRANCALION, P. H. S., HIRSCH, A., MARCATTI, G. E., DALLA CORTE, A. P., ZAMBRANO, A. M. A., COSTA, M. B. T. D., MATRICARDI, E. A. T., SILVA, A. L. D., GOYA, L. R. R. Y., VALBUENA, R., MENDONÇA, B. A. F. D., SILVA JUNIOR, C. H. L., ARAGÃO, L. E. O. C., GARCÍA, M., LIANG, J., MERRICK, T., HUDAK, A. T., XIAO, J., HANCOCK, S., DUNCASON, L., FERREIRA, M. P., VALLE, D., SAATCHI, S. Y KLAUBERG, C. Large scale multi-layer fuel load characterization in tropical savanna using GEDI spaceborne lidar data. Remote Sensing of Environment, 2022/01/01/ 2022, 268, 112764. doi: https://doi.org/10.1016/j.rse.2021.112764

LEÓN, R. A. H. Y GONZÁLEZ, S. C. *El proceso de investigación científica*. Edtion ed.: Editorial Universitaria (Cuba), 2020. ISBN 9591613075.

LI, X., WESSELS, K., ARMSTON, J., HANCOCK, S., MATHIEU, R., MAIN, R., NAIDOO, L., ERASMUS, B. Y SCHOLES, R. First validation of GEDI canopy heights in African savannas. Remote Sensing of Environment, 2023/02/01/2023, 285, 113402. doi:https://doi.org/10.1016/j.rse.2022.113402

LONDRES, M., SCHMINK, M., BÖRNER, J., DUCHELLE, A. E. Y FREY, G. P. Multidimensional forests: Complexity of forest-based values and livelihoods across Amazonian socio-cultural and geopolitical contexts. World Development, 2023/05/01/ 2023, 165, 106200. doi:https://doi.org/10.1016/j.worlddev.2023.106200

LONG, J., LIN, H., WANG, G., SUN, H. Y YAN, E. Estimating the Growing Stem Volume of the Planted Forest Using the General Linear Model and Time

Series Quad-Polarimetric SAR Images. *Sensors* [Type of Work]. 2020, vol. 20, no. 14. ISSN 1424-8220. doi:10.3390/s20143957.

LULLA, K., NELLIS, M. D., RUNDQUIST, B., SRIVASTAVA, P. K. Y SZABO, S. Mission to earth: LANDSAT 9 will continue to view the world. In.: Taylor & Francis, 2021, vol. 36, p. 2261-2263.

MARROQUÍN, P. Ajuste de ecuaciones alométricas para estimar biomasa aérea en una plantación de teca (Tectona grandis If) en Yucatán, México 2019.

MOHAMMADI-GHAZI, R., WELSCH, R. E. Y BÜYÜKÖZTÜRK, O. Kernel dependence analysis and graph structure morphing for novelty detection with high-dimensional small size data set. Mechanical Systems and Signal Processing, 2020/09/01/ 2020, 143, 106775. doi:https://doi.org/10.1016/j.ymssp.2020.106775

MULLISSA, A., VOLLRATH, A., ODONGO-BRAUN, C., SLAGTER, B., BALLING, J., GOU, Y., GORELICK, N. Y REICHE, J. Sentinel-1 SAR Backscatter Analysis Ready Data Preparation in Google Earth Engine. *Remote Sensing* [Type of Work]. 2021, vol. 13, no. 10. ISSN 2072-4292. doi:10.3390/rs13101954.

MUTANGA, O. Y KUMAR, L. Google earth engine applications. Remote Sensing, 2019, 11, Article No. 591. doi:https://doi.org/10.3390/rs11050591

NAIKOO, M. W., ISLAM, A. R. M. T., MALLICK, J. Y RAHMAN, A. Land use/land cover change and its impact on surface urban heat island and urban thermal comfort in a metropolitan city. Urban Climate, 2022, 41, 101052.

NGO, Y.-N., HO TONG MINH, D., BAGHDADI, N. Y FAYAD, I. Tropical Forest Top Height by GEDI: From Sparse Coverage to Continuous Data. *Remote Sensing* [Type of Work]. 2023, vol. 15, no. 4. ISSN 2072-4292. doi:10.3390/rs15040975.

NOVRESIANDI, D. A., SETIYOKO, A. Y ARIEF, R. Synthetic aperture radar (SAR) data applications for tropical peatlands monitoring activities: An overview. Remote Sensing Applications: Society and Environment, 2023/01/01/ 2023, 29, 100893. doi:https://doi.org/10.1016/j.rsase.2022.100893

PAN, Y., BIRDSEY, R. A., FANG, J., HOUGHTON, R., KAUPPI, P. E., KURZ, W. A., PHILLIPS, O. L., SHVIDENKO, A., LEWIS, S. L., CANADELL, J. G., CIAIS, P., JACKSON, R. B., PACALA, S. W., MCGUIRE, A. D., PIAO, S., RAUTIAINEN, A., SITCH, S. Y HAYES, D. A Large and Persistent Carbon Sink in the World's Forests. Science, 2011/08/19 2011, 333(6045), 988-993. doi:10.1126/science.1201609

PARENTE, L., MESQUITA, V., MIZIARA, F., BAUMANN, L. Y FERREIRA, L. Assessing the pasturelands and livestock dynamics in Brazil, from 1985 to 2017: A novel approach based on high spatial resolution imagery and Google Earth Engine cloud computing. Remote Sensing of Environment, 2019/10/01/2019, 232, 111301. doi:https://doi.org/10.1016/j.rse.2019.111301

PEI, T., XU, J., LIU, Y., HUANG, X., ZHANG, L., DONG, W., QIN, C., SONG, C., GONG, J. Y ZHOU, C. GIScience and remote sensing in natural resource and environmental research: Status quo and future perspectives. Geography and Sustainability, 2021/09/01/ 2021, 2(3), 207-215. doi:https://doi.org/10.1016/j.geosus.2021.08.004

POTAPOV, P., LI, X., HERNANDEZ-SERNA, A., TYUKAVINA, A., HANSEN, M. C., KOMMAREDDY, A., PICKENS, A., TURUBANOVA, S., TANG, H., SILVA, C. E., ARMSTON, J., DUBAYAH, R., BLAIR, J. B. Y HOFTON, M. Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sensing of Environment, 2021/02/01/ 2021, 253, 112165. doi:https://doi.org/10.1016/j.rse.2020.112165

POTIN, P. Sentinel-1 user handbook. In.: European Space Agency (ESA): Paris, France, 2013.

PUZZI, A., FLORES-ANDERSON, A., GRIFFIN, R., HERNDON, K. Y MEYER, F. J. Assessing SAR C-band data to effectively distinguish modified land uses in a heavily disturbed Amazon forest. International Journal of Applied Earth Observation and Geoinformation, 2021/02/01/ 2021, 94, 102214. doi:https://doi.org/10.1016/j.jag.2020.102214

RAJAB POURRAHMATI, M., BAGHDADI, N. Y FAYAD, I. Comparison of GEDI LiDAR Data Capability for Forest Canopy Height Estimation over Broadleaf and Needleleaf Forests. *Remote Sensing* [Type of Work]. 2023, vol. 15, no. 6. ISSN 2072-4292. doi:10.3390/rs15061522.

REICHE, J., HAMUNYELA, E., VERBESSELT, J., HOEKMAN, D. Y HEROLD, M. Improving near-real time deforestation monitoring in tropical dry forests by combining dense Sentinel-1 time series with Landsat and ALOS-2 PALSAR-2. Remote Sensing of Environment, 2018/01/01/ 2018, 204, 147-161. doi:https://doi.org/10.1016/j.rse.2017.10.034

RÖDIG, E., CUNTZ, M., RAMMIG, A., FISCHER, R., TAUBERT, F. Y HUTH, A. The importance of forest structure for carbon fluxes of the Amazon rainforest. Environmental Research Letters, 2018/04/30 2018, 13(5), 054013. doi:https://doi.org/10.1088/1748-9326/aabc61

RODRÍGUEZ, M., ARIAS, D., VALVERDE, J. C. Y CAMACHO, D. Ecuaciones alométricas para la estimación de la biomasa arbórea a partir de residuos de plantaciones de Gmelina arborea Roxb. y Tectona grandis Lf en Guanacaste, Costa Rica. Revista Forestal Mesoamericana Kurú, 2018, 15, 61-68. doi:http://dx.doi.org/10.18845/rfmk.v15i1.3723

SCHLUND, M., WENZEL, A., CAMARRETTA, N., STIEGLER, C. Y ERASMI, S. Vegetation canopy height estimation in dynamic tropical landscapes with

TanDEM-X supported by GEDI data. Methods in Ecology and Evolution, 2022/07/04 2022, n/a(n/a). doi:https://doi.org/10.1111/2041-210X.13933

SENAMHI En la selva preparémonos para la llegada de los friajes 2015. doi:https://www.senamhi.gob.pe/?p=pronostico-meteorologico

SILVA, C. A., DUNCANSON, L., HANCOCK, S., KLAUBERG, C., HUDAK, A. T. Y DUBAYAH, R. Estimating forest attributes in industrial Pinus taeda L. Forest plantations in Brazil using simulated NASA's GEDI spaceborne Lidar Data. In *Anais do XIX Simposio Brasileiro de Sensoramiento Remoto*. INPE - Santos-SP, Brasil, 2019a.

SILVA, C. A., DUNCANSON, L., HANCOCK, S., NEUENSCHWANDER, A., THOMAS, N., HOFTON, M., FATOYINBO, L., SIMARD, M., MARSHAK, C. Z., ARMSTON, J., LUTCHKE, S. Y DUBAYAH, R. Fusing simulated GEDI, ICESat-2 and NISAR data for regional aboveground biomass mapping. Remote Sensing of Environment, 2021/02/01/ 2021, 253, 112234. doi:https://doi.org/10.1016/j.rse.2020.112234

SILVA, C. A., VALBUENA, R., PINAGÉ, E. R., MOHAN, M., DE ALMEIDA, D. R. A., NORTH BROADBENT, E., JAAFAR, W. S. W. M., DE ALMEIDA PAPA, D., CARDIL, A. Y KLAUBERG, C. ForestGapR: An r Package for forest gap analysis from canopy height models. Methods in Ecology and Evolution, 2019b, 10(8), 1347-1356.

STEINHAUSEN, M. J., WAGNER, P. D., NARASIMHAN, B. Y WASKE, B. Combining Sentinel-1 and Sentinel-2 data for improved land use and land cover mapping of monsoon regions. International Journal of Applied Earth Observation and Geoinformation, 2018/12/01/ 2018, 73, 595-604. doi:https://doi.org/10.1016/j.jag.2018.08.011

STITT, J. M., HUDAK, A. T., SILVA, C. A., VIERLING, L. A. Y VIERLING, K. T. Evaluating the Use of Lidar to Discern Snag Characteristics Important for

Wildlife. *Remote Sensing* [Type of Work]. 2022, vol. 14, no. 3. ISSN 2072-4292. doi:10.3390/rs14030720.

TIN, H. Random decision forests. In *Proceedings of 3rd International Conference on Document Analysis and Recognition*. 1995, vol. 1, p. 278-282 vol.271.

TORRES, R., SNOEIJ, P., GEUDTNER, D., BIBBY, D., DAVIDSON, M., ATTEMA, E., POTIN, P., ROMMEN, B., FLOURY, N. Y BROWN, M. GMES Sentinel-1 mission. Remote Sensing of Environment, 2012, 120, 9-24. doi:https://doi.org/10.1016/j.rse.2011.05.028

TORRESANI, M., ROCCHINI, D., ALBERTI, A., MOUDRÝ, V., HEYM, M., THOUVERAI, E., KACIC, P. Y TOMELLERI, E. LiDAR GEDI derived tree canopy height heterogeneity reveals patterns of biodiversity in forest ecosystems. Ecological Informatics, 2023/09/01/ 2023, 76, 102082. doi:https://doi.org/10.1016/j.ecoinf.2023.102082

TURNER, B. L., SKOLE, D., SANDERSON, S., FISCHER, G., FRESCO, L. Y LEEMANS, R. Land-use and land-cover change: science/research plan. [No source information available], 1995.

WHITMORE, T. C. Y BURNHAM, C. P. *Tropical rain forests of the Far East*. Edtion ed.: Clarendon Press, 1975. ISBN 0198541279.

XI, Y., TIAN, Q., ZHANG, W., ZHANG, Z., TONG, X., BRANDT, M. Y FENSHOLT, R. Quantifying understory vegetation density using multi-temporal Sentinel-2 and GEDI LiDAR data. GIScience & Remote Sensing, 2022/12/31 2022, 59(1), 2068-2083. doi:10.1080/15481603.2022.2148338

ZHANG, S., VEGA, C., DELEUZE, C., DURRIEU, S., BARBILLON, P., BOURIAUD, O. Y RENAUD, J.-P. Modelling forest volume with small area estimation of forest inventory using GEDI footprints as auxiliary information.

International Journal of Applied Earth Observation and Geoinformation, 2022/11/01/2022, 114, 103072. doi:https://doi.org/10.1016/j.jag.2022.103072

ZHOU, X., HAO, Y., DI, L., WANG, X., CHEN, C., CHEN, Y., NAGY, G. Y JANCSO, T. Improving GEDI Forest Canopy Height Products by Considering the Stand Age Factor Derived from Time-Series Remote Sensing Images: A Case Study in Fujian, China. *Remote Sensing* [Type of Work]. 2023, vol. 15, no. 2. ISSN 2072-4292. doi:10.3390/rs15020467.

ZHU, Z., ZHOU, Y., SETO, K. C., STOKES, E. C., DENG, C., PICKETT, S. T. A. Y TAUBENBÖCK, H. Understanding an urbanizing planet: Strategic directions for remote sensing. Remote Sensing of Environment, 2019, 228, 164-182. doi:https://doi.org/10.1016/j.rse.2019.04.020

ZUQUIM, G., VAN DONINCK, J., CHAVES, P. P., QUESADA, C. A., RUOKOLAINEN, K. Y TUOMISTO, H. Introducing a map of soil base cation concentration, an ecologically relevant GIS-layer for Amazonian forests. Geoderma Regional, 2023/06/01/ 2023, 33, e00645. doi:https://doi.org/10.1016/j.geodrs.2023.e00645

ANEXOS

Anexo 1. Matriz de consistencia

Título: Modelado de atributos forestales y cubierta terrestre con datos GEDI e imágenes Sentinel en una plantación forestal de la Amazonia de Madre de Dios.

PROBLEMA GENERAL	OBJETIVO GENERAL	HIPOTESIS GENERAL	VARIABLES/INDICADORES	METODOLOGÍA
estimación de la altura del dosel, densidad de biomasa y cobertura terrestre en una plantación de Tectona grandis L. mediante la combinación de GEDI con Sentinel (-1 y -2) y modelo de elevación digital en la Amazonia de Madre de Dios en el año 2022? PROBLEMAS ESPECIFICOS P.E.1 ¿Cuál será el tipo de haz de GEDI nivel 2A respecto a valores de referencia de campo en la configuración de láser más adecuada para la estimación de las alturas del dosel en una plantación de Tectona grandis L.? P.E.2 ¿Cuál será la altura del dosel con datos GEDI nivel 2A en una plantación de Tectona grandis L.? P.E.3 ¿Cuánto será la altura del dosel y cuál será el modelo basado en Random Forest de la combinación de datos GEDI nivel 2A con Sentinel-1, -2 y elevación digital una plantación de Tectona grandis L.? P.E.4 ¿Cuánto será la biomasa con datos GEDI nivel 4B en una plantación de Tectona grandis L.? P.E.5 ¿Cuánto será la densidad de biomasa y cuál será el modelo basado en Random Forest de la combinación de datos GEDI nivel 4B con Sentinel-1, -2 y elevación digital en una plantación de Tectona grandis L.? P.E.6 ¿Como será la clasificación de la cobertura de suelo en una plantación de Tectona grandis L.	Evaluar la influencia de parámetros de adquisición y procesamiento de señales en la estimación de la altura del dosel, densidad de biomasa y cobertura terrestre en una plantación de <i>Tectona grandis</i> L. mediante la combinación de GEDI con Sentinel (-1 y -2) y modelo de elevación digital en la Amazonia de Madre de Dios en el año 2022. OBJETIVOS ESPECÍFICOS O.E.1 Evaluar el tipo de haz de GEDI nivel 2A respecto a valores de referencia de campo en la configuración de láser más adecuada para la estimación de las alturas del dosel en una plantación de las alturas del dosel en una plantación de <i>Tectona grandis</i> L. O.E.2 Estimar la altura del dosel con datos GEDI nivel 2A en una plantación de <i>Tectona grandis</i> L. O.E.3 Determinar la altura del dosel y el modelo basado en Randon Forest de la combinación de datos GEDI nivel 2A con Sentinel-1, -2 y elevación digital en una plantación de <i>Tectona grandis</i> L. O.E.4 Cuantificar la biomasa con datos GEDI nivel 4B en una plantación de <i>Tectona grandis</i> L. O.E.5 Determinar la densidad de biomasa y el modelo basado en Randon Forest de la combinación de datos GEDI nivel 4B con Sentinel-1, -2 y elevación digital en una plantación de <i>Tectona grandis</i> L. O.E.6 Clasificar la cobertura de suelo en una plantación de <i>Tectona grandis</i> L. mediante un modelo de regresión basado en Random Forest de la combinación de datos GEDI nivel 2A	La incorporación de datos de la estructura de la vegetación mediante datos GEDI combinados con Sentinel-1, -2 y modelos de elevación digital no aumenta la precisión en la estimación de la altura del dosel y densidad de biomasa en una plantación de <i>Tectona grandis</i> L. en la Amazonia de Madre de Dios, año 2022.	Variable Dependiente: Comportamiento de la altura del dosel, densidad de biomasa y cobertura de suelo en una plantación de Tectona grandis L. Indicadores: Altura del dosel y densidad de biomasa. Variable Independiente: 1. Altura del dosel y densidad de biomasa de la plantación con datos GEDI en el año 2022, 2. Altura y densidad de la biomasa de la plantación con datos combinados de GEDI con Sentinel-1, -2 y modelo de elevación digital en el año 2022. Indicadores: 1. Rh por niveles de probabilidades. 2. Estadística de la altura del dosel. 3. Estadística de la cobertura del suelo por tipo de densidad.	Diseño: Transaccional (transversal). Tipo: descriptiva, correlacional y predictivo Método: 1. Análisis de datos dasométricos para estimar altura y densidad de biomasa de la plantación de T. grandis en el año 2022. 2. Análisis de datos GEDI 2A y 4B de 2022. 3. Determinar la altura del dosel y densidad de biomasa en base a un modelo de Random Forest de la combinación de datos GEDI nivel 2A y 4B con Sentinel-1, -2 y DEM en una plantación de T. grandis. 4. Fiabilidad del modelo mediante el coeficiente de determinación, error cuadrático medio, matriz de confusión e índice de Kappa. 5. Cobertura del suelo por tipo de densidad en base al modelo obtenido con Random Forest. Población y muestra: la población estará constituida por el área e individuos de plantación de T. grandis. En cuanto a la muestra, estará en función a la superposición de huellas de datos GEDI con los individuos de la plantación.
mediante un modelo de regresión basado en Random Forest de la combinación de datos GEDI nivel 2A, Sentinel-1 y Sentinel-2?	de la combinación de datos GEDI nivel 2A, Sentinel-1 y Sentinel-2.			

Anexo 2. Métricas de altura de dosel GEDI l2a y datos de campo en la plantación de tectona gradis.

N,	Beam	rh0	rh25	rh50	rh75	rh80	rh85	rh90	rh95	rh98	rh100	Campo	digital_el
1	3	-1,380	3,740	6,510	10,100	11,450	13,320	15,120	16,470	17,330	18,040	16,500	329,019
2	8	-8,090	-1,670	0,220	2,610	3,870	5,550	7,270	9,350	11,220	13,570	13,000	329,019
3	3	-1,340	6,730	12,240	14,890	15,490	16,200	17,140	18,150	18,790	19,500	18,000	329,019
4	3	-4,860	0,290	6,700	13,770	14,630	15,420	16,430	17,740	18,680	19,880	17,000	329,019
5	8	-6,480	0,290	4,770	15,510	16,370	17,190	18,120	19,460	20,880	22,820	18,500	329,019
6	3	-3,890	-0,290	1,980	6,130	9,690	11,000	12,680	14,440	15,340	16,090	15,000	318,705
7	3	-2,950	0,670	4,150	11,940	13,100	14,300	19,650	22,120	23,060	23,730	21,000	326,064
8	8	-5,510	-0,780	1,410	10,700	11,820	12,860	14,050	15,660	17,190	19,270	16,500	325,822
9	3	-1,720	3,100	6,170	8,530	8,980	9,540	10,290	11,640	13,060	13,730	14,000	326,064
10	8	-5,630	-0,780	1,000	10,590	11,780	12,820	13,940	15,470	16,960	18,980	16,000	325,822
11	3	-3,810	-0,480	1,270	3,290	3,890	4,490	5,200	5,950	6,550	7,260	8,000	324,458
12	8	-6,930	-1,560	0,030	1,820	2,420	3,460	6,560	9,650	11,780	14,200	10,000	329,217
13	8	-7,380	-1,780	0,220	2,490	3,350	5,140	9,690	12,640	14,800	16,960	14,000	328,111
14	8	-3,200	5,920	8,200	12,110	15,990	18,010	19,680	21,470	22,780	24,870	22,000	325,593
15	3	-2,730	0,560	5,610	11,750	12,350	12,910	13,550	14,520	15,230	15,830	14,500	328,402
16	5	-5,240	-0,820	0,860	10,740	11,750	12,610	13,510	14,560	15,530	16,990	15,000	328,138
17	8	-11,970	0,070	4,020	14,690	15,880	16,890	17,930	19,350	20,650	22,780	20,000	325,593
18	5	-2,800	0,890	9,800	13,400	13,960	14,520	15,120	15,980	16,810	17,820	16,000	322,214
19	5	-4,150	1,830	11,040	13,850	14,410	15,050	15,760	16,770	17,780	19,200	17,000	318,134
20	3	-2,910	2,950	9,320	13,060	13,700	14,520	15,380	16,240	16,950	17,700	15,000	335,170
21	5	-2,130	8,120	12,050	14,410	14,900	15,460	16,090	16,880	17,590	18,490	17,000	322,214
22	5	-3,890	2,540	10,370	13,850	14,670	15,760	17,740	24,300	28,710	30,620	22,000	324,409
23	8	-5,250	-1,000	0,330	2,160	3,310	8,980	11,290	13,420	15,280	17,670	14,500	316,382
24	5	-8,270	0,440	8,380	13,700	14,340	15,050	15,830	17,140	24,110	27,630	22,000	329,082
25	8	-10,920	-0,740	0,700	8,830	10,960	12,410	13,680	15,060	16,290	18,450	15,500	316,382
26	5	-3,400	6,210	9,320	13,020	13,770	14,560	15,460	16,540	17,550	18,870	16,500	326,920
27	5	-5,570	-0,480	2,430	9,540	10,220	10,930	11,710	12,950	14,260	15,910	15,000	328,538
28	8	-5,180	-1,080	0,110	1,450	2,010	8,090	11,370	13,420	15,250	17,750	14,500	321,977
29	0	-4,150	-0,630	1,310				15,010			18,380	17,000	323,168
30	11	-4,940 -10,330	-0,110 -2,870	2,580 1,080	11,640 12,040	12,390 28,300	13,320 32,140	14,340 34,080	15,460 35,800	16,540 37,140	17,740 39,000	15,500 25,000	327,726 335,183
32	0	-5,870	-0,330	2,430	9,800	10,670	11,680		14,040	15,050	16,280	15,000	328,563
33	11	-8,800	0,930	4,840	9,360	14,200	18,790	21,330	24,160	25,690	27,670	24,500	319,227
34	0	-1,640	2,750	5,070	6,970	7,410	8,050	8,980	10,320	11,220	11,810	16,000	328,563
35	11	-12,040	-1,860	1,190	7,340	8,650	9,730	10,960	14,170	17,300	19,500	16,500	319,227
36	0	-4,150	-0,890	0,520	2,880	6,920	10,550	12,280	13,590	14,560	15,720	15,000	327,610
37	11	-7,270	-0,850	1,000	4,360	6,370	9,360	11,070	12,410	13,640	15,660	12,500	312,281
38	5	-5,720	-0,410	1,720	10,890	11,600	12,310	13,100	14,220	15,380	16,840	14,000	316,055
39	5	-4,080	-0,930	0,890	8,160	9,240	10,070		11,860	12,690	13,550	12,500	316,055
40	11	-4,990	-0,670	0,780	9,320	11,110	12,340		14,880	16,070	17,970	15,500	312,281
41	5	-5,120	-0,260	6,470	10,550	11,150	11,790		13,360	14,220	15,350	13,500	324,144
42	5	-4,040	0,560	9,510	12,130	12,610	13,100	13,660	14,370	14,970	15,830	14,500	321,898

			Π	ı	1		I						
43	11	-4,920	-0,820	0,410	3,690	10,250	12,120	13,570	15,100	16,440	18,460	16,000	317,098
44	0	-2,690	0,740	10,590	13,700	14,260	14,860	15,460	16,210	16,840	17,590	15,500	318,610
45	5	-4,410	-0,480	1,680	10,890	11,680	12,430	13,170	14,110	14,930	16,060	14,000	321,898
46	5	-2,500	1,340	9,580	12,880	13,470	14,110	14,790	15,570	16,280	17,110	16,000	321,898
47	11	-5,960	-1,080	0,140	1,600	2,120	3,200	9,280	12,080	13,830	16,070	13,000	321,834
48	6	-4,380	-0,260	6,250	12,050	12,690	13,360	14,070	14,940	15,760	16,880	16,000	340,737
49	5	-4,110	1,420	9,840	12,840	13,400	14,040	14,780	15,760	16,690	17,930	16,000	320,624
50	5	-3,960	-0,180	3,660	8,640	9,280	9,990	10,850	12,050	13,180	14,220	12,500	321,240
51	11	-7,380	-1,300	0,220	2,120	3,090	7,830	10,440	12,230	13,530	15,550	12,500	325,423
52	6	-3,780	-0,860	0,520	5,800	8,640	10,440	11,640	12,800	13,770	14,780	14,000	335,315
53	5	-4,710	-0,740	1,460	10,100	11,710	13,020	14,300	15,800	17,030	18,300	16,500	320,624
54	5	-1,530	2,620	9,540	12,460	12,880	13,360	13,890	14,520	15,200	15,910	14,500	321,240
55	11	-3,720	5,330	6,930	8,610	9,210	10,550	16,370	19,350	21,250	23,270	21,000	325,423
56	6	-3,960	-0,440	2,130	9,540	10,550	11,530	12,540	13,660	14,520	15,500	14,000	335,315
57	5	-4,340	0,970	11,110	13,960	14,450	14,970	15,570	16,430	17,250	18,410	16,500	329,249
58	6	-6,020	-0,560	2,200	10,520	11,340	12,200	13,140	14,450	15,530	16,510	15,000	322,615
59	11	-7,980	-1,300	0,930	4,430	8,350	11,410	13,350	15,550	17,150	19,350	16,500	321,400
60	0	-4,150	-0,930	0,520	3,250	9,770	11,790	13,140	14,490	15,460	16,510	14,000	332,183
61	5	-2,840	1,380	12,240	14,560	15,050	15,570	16,210	17,030	17,850	18,940	16,500	329,249
62	11	-7,340	-1,040	0,590	5,250	9,920	11,590	13,010	14,540	15,920	17,930	15,000	321,400
63	6	-5,270	-0,440	1,720	9,320	10,220	11,000	11,900	12,870	13,850	14,970	13,500	322,615
64	0	-3,810	0,590	9,390	11,830	12,280	12,760	13,360	14,150	14,930	15,870	14,000	333,051
65	5	-3,930	-0,330	2,470	10,550	11,340	12,160	13,030	14,110	15,010	16,060	14,500	325,659
66	11	-6,220	-0,330	1,560	13,050	13,940	14,950	16,110	17,600	18,940	20,990	17,500	325,659
67	0	-3,630	-0,180	1,490	10,700	11,490	12,240	13,170	14,260	14,970	15,910	14,000	332,406
68	5	-6,810	-0,970	1,270	9,210	10,290	11,190	12,090	13,210	14,110	15,270	13,500	325,659
69	11	-6,630	4,470	5,920	7,420	7,900	8,720	13,010	17,450	19,050	21,100	18,500	325,659
70	5	-5,760	-0,930	1,830	10,180	11,080	11,940	12,910	14,150	15,200	16,430	14,500	325,659
71	6	-3,810	0,740	9,920	13,210	13,700	14,260	14,860	15,830	16,880	18,150	16,500	318,221
72	0	-5,610	-0,440	2,170	13,700	14,560	15,350	16,210	17,220	18,190	19,500	17,500	325,480
73	5	-4,150	0,670	9,210	12,610	13,210	13,890	14,600	15,500	16,360	17,480	15,500	319,699
74	5	-3,810	0,780	8,870	12,130	12,690	13,290	14,040	15,050	15,980	17,220	15,000	321,536
75	11	-11,110	-0,930	1,670	8,460	11,180	13,080	14,460	15,880	17,190	19,200	16,500	319,699
76	6	-3,960	-0,780	0,780	5,650	7,600	8,910	10,030	11,150	12,010	13,060	11,500	325,423
77	0	-4,750	-0,890	1,610	11,750	13,140	14,340	15,530	16,840	17,890	19,020	17,000	325,480
78	5	-2,090	5,120	12,280	17,590	18,230	18,870	19,690	20,660	21,450	22,650	21,000	321,536
79	5	-4,260	0,070	7,150	12,760	13,400	14,070	14,790	15,680	16,540	17,780	16,000	321,536
80	6	-1,790	3,100	4,640	12,760	13,740	14,630	15,570	16,810	17,780	18,860	17,000	329,928
81	0	-3,290	-0,110	2,950	14,900	15,680	16,470	17,290	18,300	19,200	20,140	18,500	320,187
82	5	-4,260	5,760	14,560	17,630	18,230	18,980	19,880	20,960	21,970	23,400	20,000	312,458
83	6	-2,920	0,590	9,130	12,010	12,540	13,100	13,740	14,560	15,270	16,210	14,500	332,156
84	11	-8,760	0,030	5,070	15,140	16,250	17,260	18,420	20,020	21,740	24,350	19,500	314,963
85	0	-4,040	-0,220	1,680	12,160	12,990	13,700	14,520	15,530	16,320	17,180	15,500	320,187
86	5	-8,230	0,860	4,640	7,070	7,630	8,310	9,130	10,550	13,180	15,310	12,500	323,507
87	8	-4,210	5,780	7,230	13,610	15,620	17,040	18,380	20,210	21,880	24,010	21,000	322,356

			1	1	1		I	1	1	1	1		1
88	6	-3,480	0,030	6,140	10,330	10,930	11,560	12,280	13,210	14,070	15,080	14,000	332,156
89	11	-4,960	-0,370	1,930	13,080	13,980	14,880	15,990	17,520	18,900	21,030	17,500	314,963
90	1	-5,010	-0,670	0,710	7,780	9,320	10,370	11,270	12,390	13,290	14,450	12,500	332,421
91	11	-5,100	-0,740	0,590	10,740	12,040	13,120	14,240	15,660	17,080	19,160	16,500	323,984
92	5	-4,490	-0,290	2,770	14,520	21,600	27,140	29,390	31,260	32,610	33,990	18,000	319,719
93	5	-2,920	4,680	8,420	12,460	13,250	14,110	15,050	16,430	17,820	19,470	16,500	319,719
94	8	-6,110	-0,890	2,010	12,300	13,570	14,690	15,840	17,300	18,640	20,580	16,500	332,421
95	1	-5,330	-1,300	0,520	2,530	3,050	3,650	4,390	5,480	6,300	7,270	8,000	328,998
96	6	-3,400	0,590	8,720	11,380	11,860	12,390	13,020	13,850	14,630	15,610	14,000	329,589
97	5	-4,790	4,490	7,750	10,100	10,700	11,380	12,240	13,550	14,970	16,510	14,000	319,719
98	1	-3,810	-0,670	0,860	7,820	9,240	10,440	11,680	13,140	14,300	15,570	14,000	328,998
99	11	-5,440	-0,930	0,480	7,680	10,360	11,820	12,970	14,320	15,580	17,630	15,000	323,984
100	5	-1,940	13,060	25,340	31,190	32,200	33,240	34,220	35,270	36,200	37,930	22,000	322,311
101	8	-5,030	-0,700	1,000	9,170	10,210	11,220	12,380	13,830	15,280	17,190	14,500	330,423
102	1	-5,850	-1,190	-0,110	0,890	1,110	1,410	1,750	2,230	2,750	3,870	5,000	332,634
103	6	-3,180	0,000	5,690	11,190	11,790	12,430	13,210	14,220	15,120	16,170	15,000	329,589
104	5	-5,120	4,000	9,320	15,500	16,620	17,890	19,610	22,160	26,580	28,710	22,000	325,553
105	5	-3,250	7,710	11,940	29,990	31,820	33,620	36,320	38,790	40,250	41,630	13,000	324,382
106	8	-6,820	-1,110	0,260	2,120	4,690	8,390	9,730	11,070	12,230	14,240	12,500	338,481
107	1	-4,680	-0,930	0,710	5,010	8,010	9,770	11,490	13,170	14,370	15,720	13,500	332,634
108	11	-7,940	-1,520	0,030	1,820	2,610	7,190	11,000	13,270	14,730	16,670	12,500	326,642
109	1	-4,530	-0,740	1,080	8,870	10,550	11,750	12,800	14,040	15,160	16,580	14,500	332,634
110	1	-3,870	-0,890	0,590	4,020	9,020	10,960	12,260	13,870	15,210	16,440	15,000	322,397
111	6	-5,240	0,290	8,980	11,900	12,390	12,990	13,660	14,480	15,200	16,280	14,500	330,351
112	5	-1,490	8,040	13,020	16,770	17,440	18,300	19,460	21,220	22,650	24,180	22,000	324,382
113	8	-11,560	-1,150	0,820	3,610	6,520	10,880	12,710	14,430	15,990	18,340	14,500	338,327
114	11	-6,600	-0,180	2,720	12,970	14,090	15,140	16,290	18,190	20,470	23,230	20,000	325,215
115	1	-4,510	-1,000	0,930	4,580	7,040	9,060	10,960	12,710	13,940	15,060	13,500	327,436
116	0	-5,310	-0,710	0,860	11,530	12,580	13,550	14,370	15,310	16,130	17,290	15,500	323,950
117	6	-2,730	3,810	10,700	13,100	13,590	14,150	14,780	15,720	16,540	17,590	15,500	333,436
118	11	-5,590	-0,220	3,280	14,390	15,170	15,990	16,960	18,230	19,500	21,480	18,500	315,941
119	1	-4,340	-0,670	1,120	10,890	11,940	12,840	13,740	14,860	15,870	17,140	14,500	327,436
120	0	-2,390	5,200	8,570	19,880	20,590	21,490	22,500	23,550	24,410	25,720	20,000	323,950
121	6	-3,510	0,860	8,420	11,980	12,610	13,250	13,960	14,820	15,650	16,660	15,000	325,952
122	1	-6,250	-0,670	1,570	12,240	13,360	14,490	15,530	16,770	17,670	19,020	17,000	318,018
123	11	-8,540	-0,410	1,450	10,850	11,970	13,050	14,320	16,110	17,750	19,760	17,000	325,438
124	0	-5,160	-0,330	1,610	13,920	14,710	15,530	16,400	17,440	18,340	19,470	17,500	321,467
125	1	-3,200	-0,820	0,370	2,080	2,980	7,940	10,810	12,630	13,720	14,690	13,000	318,018
126	6	-1,720	9,240	12,240	14,110	14,520	14,970	15,500	16,240	16,990	18,040	16,000	325,438
127	0	-3,250	0,220	9,730	15,830	16,540	17,260	18,010	18,900	19,730	20,780	19,000	321,467
128	0	-4,250	-0,780	0,740	2,340	2,720	3,130	3,610	4,360	5,030	5,810	14,000	321,467
129	1	-4,600	-0,930	0,860	6,470	9,690	11,790	13,320	14,750	15,800	16,990	15,000	318,018
130	11	-7,860	-1,370	1,040	9,920	11,370	12,750	14,170	15,730	17,080	18,980	16,500	325,438
131	6	-3,780	0,030	7,450	13,290	13,920	14,600	15,310	16,170	16,960	18,000	16,000	325,438
132	1	-5,390	-0,780	0,480	2,280	3,100	6,590	10,440	12,280	13,470	15,050	13,000	315,494

133	1	-4,150	-1,230	-0,180	0,860	1,080	1,380	1,750	2,280	2,840	3,740	12,000	318,392
134	2	-5,700	-1,260	0,220	1,710	1 1	2,460	2,900	3,610	4,280	5,250	,	332,257
135	2	-3,990	-1,110		1,710		3,540	8,090	10,360	12,190	13,610		332,045
136	11	-5,370	-0,740	0,700	8,090	10,060	14,880	32,550	35,950	37,810	40,380	22,000	336,464
137	2	-6,150	-0,780	0,820	3,020	4,510	7,570	10,290	12,040	13,760	15,030	12,500	332,045
138	11	-7,420	-1,110	0,330	2,870	7,530	9,320	10,810	12,380	13,720	15,810	15,000	339,732
139	11	-7,160	-1,300	0,220	2,200	3,350	6,890	8,650	10,210	11,590	13,610	10,500	340,195
140	2	-4,190	-1,040	0,180	1,680	2,350	4,940	8,120	10,220	11,640	13,140	11,000	332,151
141	2	-4,300	-1,010	0,180	1,680	2,350	4,260	7,330	8,940	10,100	11,450	11,000	333,649
142	2	-3,610	-0,890	0,330	1,900	2,490	3,690	7,640	9,660	11,150	12,560	11,000	333,649
143	2	-4,190	-1,010	0,220	1,720	2,280	3,960	6,770	8,380	9,540	10,930	9,000	334,568
144	2	-4,210	-1,300	0,070	1,640	2,200	4,840	7,380	8,760	9,730	10,770	9,000	334,568
145	2	-4,710	-1,190	0,180	1,720	2,240	2,990	5,570	9,320	11,000	12,720	12,000	334,568
146	11	-7,300	-1,410	-0,030	1,370	1,820	2,490	4,280	7,980	10,660	13,500	9,500	334,027
147	11	-7,160	-1,190	0,290	2,380	5,030	8,350	9,730	11,260	12,790	15,100	12,000	333,618
148	2	-3,930	-0,440	1,340	11,000	11,940	12,760	13,700	14,930	16,020	17,330	15,000	334,027
149	2	-4,820	-1,190	0,140	1,640	2,090	2,840	5,050	9,020	11,040	12,690	12,000	336,290
150	2	-4,110	-0,740	0,670	3,590	5,050	6,360	7,710	9,770	11,300	12,760	13,000	336,290
151	8	-3,480	-0,370	1,530	10,480	11,230	11,980	12,730	13,700	14,560	15,610	13,500	326,678

Anexo 3. Métricas de densidad de biomasa y agbd gedi l4b y datos de campo en la plantación de tectona gradis.

Numero	DAP Promedio (cm)	Biomasa (Mg/ha)	AGBD (Mg/ha)
1	6,300	7,468	165,860
2	6,400	7,710	165,860
3	6,700	8,485	165,860
4	6,700	8,485	165,860
5	6,800	8,760	165,860
6	6,800	8,760	165,860
7	6,900	9,044	165,860
8	7,000	9,338	165,860
9	7,000	9,338	165,860
10	7,000	9,338	165,860
11	7,100	9,641	165,860
12	7,100	9,641	165,860
13	7,100	9,641	165,860
14	7,200	9,953	165,860
15	7,200	9,953	165,860
16	7,300	10,276	165,860
17	7,500	10,953	165,860
18	7,500	10,953	165,860
19	7,700	11,675	165,860
20	7,800	12,054	165,860
21	7,800	12,054	165,860
22	8,300	14,139	165,860
23	8,500	15,071	165,860
24	8,900	17,124	165,860
25	9,000	17,679	165,860
26	9,100	18,252	165,860
27	9,300	19,455	165,860
28	9,300	19,455	165,860
29	9,400	20,086	165,860
30	9,400	20,086	165,860

31 9,500 20,738 165,860 32 9,600 21,410 165,860 33 9,900 23,561 165,860 34 10,000 24,325 165,860 35 10,000 24,325 165,860 36 10,000 24,325 165,860 38 10,100 25,114 165,860 39 10,200 25,929 165,860 40 10,200 25,929 165,860 41 10,200 25,929 165,860 42 10,300 26,770 139,740 43 10,500 28,534 139,740 44 10,500 28,534 139,740 45 10,600 29,459 139,740 46 10,600 29,459 139,740 47 10,800 31,401 139,740 48 11,000 33,471 139,740 49 11,000 34,556 139,740 50		1		ı
33 9,900 23,561 165,860 34 10,000 24,325 165,860 35 10,000 24,325 165,860 36 10,000 24,325 165,860 37 10,000 24,325 165,860 38 10,100 25,114 165,860 39 10,200 25,929 165,860 40 10,200 25,929 165,860 41 10,200 25,929 165,860 42 10,300 26,770 139,740 43 10,500 28,534 139,740 44 10,500 28,534 139,740 45 10,600 29,459 139,740 46 10,600 29,459 139,740 47 10,800 31,401 139,740 48 11,000 33,471 139,740 49 11,000 34,556 139,740 50 11,100 34,556 139,740 51	31	9,500	20,738	165,860
34 10,000 24,325 165,860 35 10,000 24,325 165,860 36 10,000 24,325 165,860 37 10,000 24,325 165,860 38 10,100 25,114 165,860 39 10,200 25,929 165,860 40 10,200 25,929 165,860 41 10,200 25,929 165,860 42 10,300 26,770 139,740 43 10,500 28,534 139,740 44 10,500 28,534 139,740 45 10,600 29,459 139,740 46 10,600 29,459 139,740 47 10,800 31,401 139,740 48 11,000 33,471 139,740 49 11,000 34,556 139,740 50 11,100 34,556 139,740 51 11,400 38,028 139,740 53	32	9,600	21,410	165,860
35 10,000 24,325 165,860 36 10,000 24,325 165,860 37 10,000 24,325 165,860 38 10,100 25,114 165,860 39 10,200 25,929 165,860 40 10,200 25,929 165,860 41 10,200 25,929 165,860 42 10,300 26,770 139,740 43 10,500 28,534 139,740 44 10,500 28,534 139,740 45 10,600 29,459 139,740 46 10,600 29,459 139,740 47 10,800 31,401 139,740 48 11,000 33,471 139,740 49 11,000 34,556 139,740 50 11,100 34,556 139,740 51 11,400 38,028 139,740 52 11,400 38,028 139,740 54	33	9,900	23,561	165,860
36 10,000 24,325 165,860 37 10,000 24,325 165,860 38 10,100 25,114 165,860 39 10,200 25,929 165,860 40 10,200 25,929 165,860 41 10,200 25,929 165,860 42 10,300 26,770 139,740 43 10,500 28,534 139,740 44 10,500 28,534 139,740 45 10,600 29,459 139,740 46 10,600 29,459 139,740 47 10,800 31,401 139,740 48 11,000 33,471 139,740 49 11,000 34,556 139,740 50 11,100 34,556 139,740 51 11,100 34,556 139,740 52 11,400 38,028 139,740 53 11,400 38,028 139,740 55	34	10,000	24,325	165,860
37 10,000 24,325 165,860 38 10,100 25,114 165,860 39 10,200 25,929 165,860 40 10,200 25,929 165,860 41 10,200 25,929 165,860 42 10,300 26,770 139,740 43 10,500 28,534 139,740 44 10,500 28,534 139,740 45 10,600 29,459 139,740 46 10,600 29,459 139,740 47 10,800 31,401 139,740 48 11,000 33,471 139,740 49 11,000 34,556 139,740 50 11,100 34,556 139,740 51 11,100 34,556 139,740 52 11,400 38,028 139,740 53 11,400 38,028 139,740 54 11,500 39,262 139,740 55	35	10,000	24,325	165,860
38 10,100 25,114 165,860 39 10,200 25,929 165,860 40 10,200 25,929 165,860 41 10,200 25,929 165,860 42 10,300 26,770 139,740 43 10,500 28,534 139,740 44 10,500 28,534 139,740 45 10,600 29,459 139,740 46 10,600 29,459 139,740 47 10,800 31,401 139,740 48 11,000 33,471 139,740 49 11,000 34,556 139,740 50 11,100 34,556 139,740 51 11,100 34,556 139,740 52 11,400 38,028 139,740 53 11,400 38,028 139,740 54 11,500 39,262 139,740 55 11,600 40,535 139,740 56	36	10,000	24,325	165,860
39 10,200 25,929 165,860 40 10,200 25,929 165,860 41 10,200 25,929 165,860 42 10,300 26,770 139,740 43 10,500 28,534 139,740 44 10,500 29,459 139,740 45 10,600 29,459 139,740 46 10,600 29,459 139,740 47 10,800 31,401 139,740 48 11,000 33,471 139,740 49 11,000 34,556 139,740 50 11,100 34,556 139,740 51 11,100 34,556 139,740 52 11,400 38,028 139,740 53 11,400 38,028 139,740 54 11,500 39,262 139,740 55 11,600 40,535 139,740 57 11,600 40,535 139,740 59	37	10,000	24,325	165,860
40 10,200 25,929 165,860 41 10,200 25,929 165,860 42 10,300 26,770 139,740 43 10,500 28,534 139,740 44 10,500 28,534 139,740 45 10,600 29,459 139,740 46 10,600 29,459 139,740 47 10,800 31,401 139,740 48 11,000 33,471 139,740 49 11,000 34,556 139,740 50 11,100 34,556 139,740 51 11,100 34,556 139,740 52 11,400 38,028 139,740 53 11,400 38,028 139,740 54 11,500 39,262 139,740 55 11,600 40,535 139,740 56 11,600 40,535 139,740 57 11,600 40,535 139,740 59	38	10,100	25,114	165,860
41 10,200 25,929 165,860 42 10,300 26,770 139,740 43 10,500 28,534 139,740 44 10,500 28,534 139,740 45 10,600 29,459 139,740 46 10,600 29,459 139,740 47 10,800 31,401 139,740 48 11,000 33,471 139,740 49 11,000 34,556 139,740 50 11,100 34,556 139,740 51 11,100 34,556 139,740 52 11,400 38,028 139,740 53 11,400 38,028 139,740 54 11,500 39,262 139,740 55 11,600 40,535 139,740 56 11,600 40,535 139,740 58 11,800 43,207 139,740 59 11,900 44,608 139,740 60 11,900 44,608 139,740 61 11,900 <td< td=""><td>39</td><td>10,200</td><td>25,929</td><td>165,860</td></td<>	39	10,200	25,929	165,860
42 10,300 26,770 139,740 43 10,500 28,534 139,740 44 10,500 28,534 139,740 45 10,600 29,459 139,740 46 10,600 29,459 139,740 47 10,800 31,401 139,740 48 11,000 33,471 139,740 49 11,000 34,556 139,740 50 11,100 34,556 139,740 51 11,100 34,556 139,740 52 11,400 38,028 139,740 53 11,400 38,028 139,740 54 11,500 39,262 139,740 55 11,600 40,535 139,740 56 11,600 40,535 139,740 57 11,600 40,535 139,740 59 11,900 44,608 139,740 60 11,900 44,608 139,740 61 11,900 46,054 139,740 62 12,000 <td< td=""><td>40</td><td>10,200</td><td>25,929</td><td>165,860</td></td<>	40	10,200	25,929	165,860
43 10,500 28,534 139,740 44 10,500 28,534 139,740 45 10,600 29,459 139,740 46 10,600 29,459 139,740 47 10,800 31,401 139,740 48 11,000 33,471 139,740 49 11,000 34,556 139,740 50 11,100 34,556 139,740 51 11,100 34,556 139,740 52 11,400 38,028 139,740 53 11,400 38,028 139,740 54 11,500 39,262 139,740 55 11,600 40,535 139,740 56 11,600 40,535 139,740 57 11,600 40,535 139,740 59 11,900 44,608 139,740 60 11,900 44,608 139,740 61 11,900 44,608 139,740 62	41	10,200	25,929	165,860
44 10,500 28,534 139,740 45 10,600 29,459 139,740 46 10,600 29,459 139,740 47 10,800 31,401 139,740 48 11,000 33,471 139,740 49 11,000 34,556 139,740 50 11,100 34,556 139,740 51 11,100 34,556 139,740 52 11,400 38,028 139,740 53 11,400 38,028 139,740 54 11,500 39,262 139,740 55 11,600 40,535 139,740 56 11,600 40,535 139,740 57 11,600 40,535 139,740 59 11,900 44,608 139,740 60 11,900 44,608 139,740 61 11,900 44,608 139,740 62 12,000 46,054 139,740 63 12,200 49,090 139,740 64 12,300 <td< td=""><td>42</td><td>10,300</td><td>26,770</td><td>139,740</td></td<>	42	10,300	26,770	139,740
45 10,600 29,459 139,740 46 10,600 29,459 139,740 47 10,800 31,401 139,740 48 11,000 33,471 139,740 49 11,000 34,556 139,740 50 11,100 34,556 139,740 51 11,100 34,556 139,740 52 11,400 38,028 139,740 53 11,400 38,028 139,740 54 11,500 39,262 139,740 55 11,600 40,535 139,740 56 11,600 40,535 139,740 57 11,600 40,535 139,740 59 11,900 44,608 139,740 60 11,900 44,608 139,740 61 11,900 44,608 139,740 62 12,000 46,054 139,740 63 12,200 49,090 139,740 64	43	10,500	28,534	139,740
46 10,600 29,459 139,740 47 10,800 31,401 139,740 48 11,000 33,471 139,740 49 11,000 33,471 139,740 50 11,100 34,556 139,740 51 11,100 34,556 139,740 52 11,400 38,028 139,740 53 11,400 38,028 139,740 54 11,500 39,262 139,740 55 11,600 40,535 139,740 56 11,600 40,535 139,740 57 11,600 40,535 139,740 58 11,800 43,207 139,740 59 11,900 44,608 139,740 60 11,900 44,608 139,740 61 11,900 46,054 139,740 62 12,000 46,054 139,740 63 12,200 49,090 139,740 64 12,300 50,682 139,740	44	10,500	28,534	139,740
47 10,800 31,401 139,740 48 11,000 33,471 139,740 49 11,000 34,556 139,740 50 11,100 34,556 139,740 51 11,100 34,556 139,740 52 11,400 38,028 139,740 53 11,400 38,028 139,740 54 11,500 39,262 139,740 55 11,600 40,535 139,740 56 11,600 40,535 139,740 57 11,600 40,535 139,740 59 11,900 44,608 139,740 60 11,900 44,608 139,740 61 11,900 44,608 139,740 62 12,000 46,054 139,740 63 12,200 49,090 139,740 64 12,300 50,682 139,740	45	10,600	29,459	139,740
48 11,000 33,471 139,740 49 11,000 33,471 139,740 50 11,100 34,556 139,740 51 11,100 34,556 139,740 52 11,400 38,028 139,740 53 11,400 38,028 139,740 54 11,500 39,262 139,740 55 11,600 40,535 139,740 56 11,600 40,535 139,740 57 11,600 40,535 139,740 58 11,800 43,207 139,740 59 11,900 44,608 139,740 60 11,900 44,608 139,740 61 11,900 44,608 139,740 62 12,000 46,054 139,740 63 12,200 49,090 139,740 64 12,300 50,682 139,740	46	10,600	29,459	139,740
49 11,000 33,471 139,740 50 11,100 34,556 139,740 51 11,100 34,556 139,740 52 11,400 38,028 139,740 53 11,400 38,028 139,740 54 11,500 39,262 139,740 55 11,600 40,535 139,740 56 11,600 40,535 139,740 58 11,800 43,207 139,740 59 11,900 44,608 139,740 60 11,900 44,608 139,740 61 11,900 44,608 139,740 62 12,000 46,054 139,740 63 12,200 49,090 139,740 64 12,300 50,682 139,740	47	10,800	31,401	139,740
50 11,100 34,556 139,740 51 11,100 34,556 139,740 52 11,400 38,028 139,740 53 11,400 38,028 139,740 54 11,500 39,262 139,740 55 11,600 40,535 139,740 56 11,600 40,535 139,740 57 11,600 40,535 139,740 58 11,800 43,207 139,740 59 11,900 44,608 139,740 60 11,900 44,608 139,740 61 11,900 44,608 139,740 62 12,000 46,054 139,740 63 12,200 49,090 139,740 64 12,300 50,682 139,740	48	11,000	33,471	139,740
51 11,100 34,556 139,740 52 11,400 38,028 139,740 53 11,400 38,028 139,740 54 11,500 39,262 139,740 55 11,600 40,535 139,740 56 11,600 40,535 139,740 57 11,600 40,535 139,740 58 11,800 43,207 139,740 59 11,900 44,608 139,740 60 11,900 44,608 139,740 61 11,900 44,608 139,740 62 12,000 46,054 139,740 63 12,200 49,090 139,740 64 12,300 50,682 139,740	49	11,000	33,471	139,740
52 11,400 38,028 139,740 53 11,400 38,028 139,740 54 11,500 39,262 139,740 55 11,600 40,535 139,740 56 11,600 40,535 139,740 57 11,600 40,535 139,740 58 11,800 43,207 139,740 59 11,900 44,608 139,740 60 11,900 44,608 139,740 61 11,900 44,608 139,740 62 12,000 46,054 139,740 63 12,200 49,090 139,740 64 12,300 50,682 139,740	50	11,100	34,556	139,740
53 11,400 38,028 139,740 54 11,500 39,262 139,740 55 11,600 40,535 139,740 56 11,600 40,535 139,740 57 11,600 40,535 139,740 58 11,800 43,207 139,740 59 11,900 44,608 139,740 60 11,900 44,608 139,740 61 11,900 44,608 139,740 62 12,000 46,054 139,740 63 12,200 49,090 139,740 64 12,300 50,682 139,740	51	11,100	34,556	139,740
54 11,500 39,262 139,740 55 11,600 40,535 139,740 56 11,600 40,535 139,740 57 11,600 40,535 139,740 58 11,800 43,207 139,740 59 11,900 44,608 139,740 60 11,900 44,608 139,740 61 11,900 44,608 139,740 62 12,000 46,054 139,740 63 12,200 49,090 139,740 64 12,300 50,682 139,740	52	11,400	38,028	139,740
55 11,600 40,535 139,740 56 11,600 40,535 139,740 57 11,600 40,535 139,740 58 11,800 43,207 139,740 59 11,900 44,608 139,740 60 11,900 44,608 139,740 61 11,900 44,608 139,740 62 12,000 46,054 139,740 63 12,200 49,090 139,740 64 12,300 50,682 139,740	53	11,400	38,028	139,740
56 11,600 40,535 139,740 57 11,600 40,535 139,740 58 11,800 43,207 139,740 59 11,900 44,608 139,740 60 11,900 44,608 139,740 61 11,900 44,608 139,740 62 12,000 46,054 139,740 63 12,200 49,090 139,740 64 12,300 50,682 139,740	54	11,500	39,262	139,740
57 11,600 40,535 139,740 58 11,800 43,207 139,740 59 11,900 44,608 139,740 60 11,900 44,608 139,740 61 11,900 44,608 139,740 62 12,000 46,054 139,740 63 12,200 49,090 139,740 64 12,300 50,682 139,740	55	11,600	40,535	139,740
58 11,800 43,207 139,740 59 11,900 44,608 139,740 60 11,900 44,608 139,740 61 11,900 44,608 139,740 62 12,000 46,054 139,740 63 12,200 49,090 139,740 64 12,300 50,682 139,740	56	11,600	40,535	139,740
59 11,900 44,608 139,740 60 11,900 44,608 139,740 61 11,900 44,608 139,740 62 12,000 46,054 139,740 63 12,200 49,090 139,740 64 12,300 50,682 139,740	57	11,600	40,535	139,740
60 11,900 44,608 139,740 61 11,900 44,608 139,740 62 12,000 46,054 139,740 63 12,200 49,090 139,740 64 12,300 50,682 139,740	58	11,800	43,207	139,740
61 11,900 44,608 139,740 62 12,000 46,054 139,740 63 12,200 49,090 139,740 64 12,300 50,682 139,740	59	11,900	44,608	139,740
62 12,000 46,054 139,740 63 12,200 49,090 139,740 64 12,300 50,682 139,740	60	11,900	44,608	139,740
63 12,200 49,090 139,740 64 12,300 50,682 139,740	61	11,900	44,608	139,740
64 12,300 50,682 139,740	62	12,000	46,054	139,740
	63	12,200	49,090	139,740
65 12,400 52,326 139,740	64	12,300	50,682	139,740
	65	12,400	52,326	139,740

66	12,400	52,326	139,740
67	12,400	52,326	139,740
68	12,500	54,023	139,740
69	12,600	55,774	139,740
70	12,600	55,774	139,740
71	12,700	57,583	139,740
72	12,800	59,451	139,740
73	12,800	59,451	139,740
74	13,200	67,546	139,740
75	13,200	67,546	139,740
76	13,300	69,736	139,740
77	13,400	71,998	139,740
78	13,500	74,333	139,740
79	13,700	79,232	139,740
80	13,700	79,232	139,740
81	13,700	79,232	139,740
82	13,800	81,802	139,740
83	13,800	81,802	139,740
84	13,800	81,802	139,740
85	13,900	84,455	139,740
86	14,000	87,193	139,740
87	14,100	90,021	139,740
88	14,200	92,940	139,740
89	14,400	99,066	139,740
90	14,500	102,279	139,740
91	14,500	102,279	139,740
92	14,600	105,596	139,740
93	14,700	109,020	139,740
94	15,000	119,975	139,740
95	15,000	119,975	139,740
96	15,000	119,975	139,740
97	15,200	127,882	139,740
98	15,200	127,882	139,740
99	15,400	136,311	139,740
100	15,600	145,296	139,740

101 15,800 154,873 139,740 102 15,800 154,873 139,740 103 15,800 154,873 139,740 104 15,800 154,873 139,740 105 15,800 154,873 139,740 106 15,900 159,895 139,740 107 15,900 159,895 139,740 108 16,000 165,080 139,740 109 16,100 170,434 139,740 110 16,200 175,961 139,740 110 16,200 175,961 178,302 111 16,200 175,961 178,302 112 16,300 181,668 178,302 113 16,400 187,559 178,302 114 16,400 187,559 178,302 115 16,500 193,642 178,302 116 16,500 193,642 178,302 119 16,800 213,098 178,302				1
103 15,800 154,873 139,740 104 15,800 154,873 139,740 105 15,800 154,873 139,740 106 15,900 159,895 139,740 107 15,900 159,895 139,740 108 16,000 165,080 139,740 109 16,100 170,434 139,740 110 16,200 175,961 139,740 111 16,200 175,961 139,740 111 16,200 175,961 178,302 112 16,300 181,668 178,302 113 16,400 187,559 178,302 114 16,400 187,559 178,302 115 16,500 193,642 178,302 116 16,500 193,642 178,302 117 16,600 199,921 178,302 119 16,800 213,098 178,302 120 16,900 220,009 176,931	101	15,800	154,873	139,740
104 15,800 154,873 139,740 105 15,800 154,873 139,740 106 15,900 159,895 139,740 107 15,900 159,895 139,740 108 16,000 165,080 139,740 109 16,100 170,434 139,740 110 16,200 175,961 139,740 111 16,200 175,961 178,302 112 16,300 181,668 178,302 113 16,400 187,559 178,302 114 16,400 187,559 178,302 115 16,500 193,642 178,302 116 16,500 193,642 178,302 117 16,600 199,921 178,302 118 16,800 213,098 178,302 119 16,800 213,098 178,302 120 16,900 220,009 176,931 121 17,000 227,144 176,931	102	15,800	154,873	139,740
105 15,800 154,873 139,740 106 15,900 159,895 139,740 107 15,900 159,895 139,740 108 16,000 165,080 139,740 109 16,100 170,434 139,740 110 16,200 175,961 139,740 111 16,200 175,961 178,302 112 16,300 181,668 178,302 113 16,400 187,559 178,302 114 16,400 187,559 178,302 115 16,500 193,642 178,302 116 16,500 193,642 178,302 117 16,600 199,921 178,302 118 16,800 213,098 178,302 119 16,800 213,098 178,302 120 16,900 220,009 176,931 121 17,000 227,144 176,931 122 17,000 242,116 178,302	103	15,800	154,873	139,740
106 15,900 159,895 139,740 107 15,900 159,895 139,740 108 16,000 165,080 139,740 109 16,100 170,434 139,740 110 16,200 175,961 139,740 111 16,200 175,961 178,302 112 16,300 181,668 178,302 113 16,400 187,559 178,302 114 16,400 187,559 178,302 115 16,500 193,642 178,302 116 16,500 193,642 178,302 117 16,600 199,921 178,302 118 16,800 213,098 178,302 119 16,800 213,098 178,302 120 16,900 220,009 176,931 121 17,000 227,144 176,931 122 17,000 227,144 178,302 123 17,200 242,116 178,302	104	15,800	154,873	139,740
107 15,900 159,895 139,740 108 16,000 165,080 139,740 109 16,100 170,434 139,740 110 16,200 175,961 139,740 111 16,200 175,961 178,302 112 16,300 181,668 178,302 113 16,400 187,559 178,302 114 16,400 187,559 178,302 115 16,500 193,642 178,302 116 16,500 193,642 178,302 117 16,600 199,921 178,302 118 16,800 213,098 178,302 119 16,800 213,098 178,302 120 16,900 220,009 176,931 121 17,000 227,144 176,931 122 17,000 227,144 178,302 123 17,200 242,116 178,302 124 17,200 242,116 178,302	105	15,800	154,873	139,740
108 16,000 165,080 139,740 109 16,100 170,434 139,740 110 16,200 175,961 139,740 111 16,200 175,961 178,302 112 16,300 181,668 178,302 113 16,400 187,559 178,302 114 16,400 187,559 178,302 115 16,500 193,642 178,302 116 16,500 193,642 178,302 117 16,600 199,921 178,302 118 16,800 213,098 178,302 119 16,800 213,098 178,302 120 16,900 220,009 176,931 121 17,000 227,144 176,931 122 17,000 227,144 178,302 123 17,200 242,116 178,302 124 17,200 242,116 178,302 125 17,300 249,967 178,302	106	15,900	159,895	139,740
109 16,100 170,434 139,740 110 16,200 175,961 139,740 111 16,200 175,961 178,302 112 16,300 181,668 178,302 113 16,400 187,559 178,302 114 16,400 187,559 178,302 115 16,500 193,642 178,302 116 16,500 193,642 178,302 117 16,600 199,921 178,302 118 16,800 213,098 178,302 119 16,800 213,098 178,302 120 16,900 220,009 176,931 121 17,000 227,144 176,931 122 17,000 227,144 178,302 123 17,200 242,116 178,302 124 17,200 242,116 178,302 125 17,300 249,967 178,302 126 17,300 266,443 178,302	107	15,900	159,895	139,740
110 16,200 175,961 139,740 111 16,200 175,961 178,302 112 16,300 181,668 178,302 113 16,400 187,559 178,302 114 16,400 187,559 178,302 115 16,500 193,642 178,302 116 16,500 193,642 178,302 117 16,600 199,921 178,302 118 16,800 213,098 178,302 119 16,800 213,098 178,302 120 16,900 220,009 176,931 121 17,000 227,144 176,931 122 17,000 227,144 178,302 123 17,200 242,116 178,302 124 17,200 242,116 178,302 125 17,300 249,967 178,302 126 17,300 249,967 178,302 128 17,500 266,443 178,302	108	16,000	165,080	139,740
111 16,200 175,961 178,302 112 16,300 181,668 178,302 113 16,400 187,559 178,302 114 16,400 187,559 178,302 115 16,500 193,642 178,302 116 16,500 193,642 178,302 117 16,600 199,921 178,302 118 16,800 213,098 178,302 119 16,800 213,098 178,302 120 16,900 220,009 176,931 121 17,000 227,144 176,931 122 17,000 227,144 178,302 123 17,200 242,116 178,302 124 17,200 242,116 178,302 125 17,300 249,967 178,302 126 17,300 249,967 178,302 128 17,500 266,443 178,302 129 17,500 266,443 178,302	109	16,100	170,434	139,740
112 16,300 181,668 178,302 113 16,400 187,559 178,302 114 16,400 187,559 178,302 115 16,500 193,642 178,302 116 16,500 193,642 178,302 117 16,600 199,921 178,302 118 16,800 213,098 178,302 119 16,800 213,098 178,302 120 16,900 220,009 176,931 121 17,000 227,144 176,931 122 17,000 227,144 178,302 123 17,200 242,116 178,302 124 17,200 242,116 178,302 125 17,300 249,967 178,302 126 17,300 249,967 178,302 128 17,500 266,443 178,302 129 17,500 266,443 178,302 130 17,600 275,084 178,302	110	16,200	175,961	139,740
113 16,400 187,559 178,302 114 16,400 187,559 178,302 115 16,500 193,642 178,302 116 16,500 193,642 178,302 117 16,600 199,921 178,302 118 16,800 213,098 178,302 119 16,800 213,098 178,302 120 16,900 220,009 176,931 121 17,000 227,144 176,931 122 17,000 227,144 178,302 123 17,200 242,116 178,302 124 17,200 242,116 178,302 125 17,300 249,967 178,302 126 17,300 249,967 178,302 128 17,500 266,443 178,302 129 17,500 266,443 178,302 130 17,600 275,084 178,302 132 17,700 284,005 178,302	111	16,200	175,961	178,302
114 16,400 187,559 178,302 115 16,500 193,642 178,302 116 16,500 193,642 178,302 117 16,600 199,921 178,302 118 16,800 213,098 178,302 119 16,800 213,098 178,302 120 16,900 220,009 176,931 121 17,000 227,144 176,931 122 17,000 227,144 178,302 123 17,200 242,116 178,302 124 17,200 242,116 178,302 125 17,300 249,967 178,302 126 17,300 249,967 178,302 127 17,500 266,443 178,302 129 17,500 266,443 178,302 130 17,600 275,084 178,302 131 17,700 284,005 178,302 132 17,700 284,005 178,302 133 17,800 293,215 176,931 1	112	16,300	181,668	178,302
115 16,500 193,642 178,302 116 16,500 193,642 178,302 117 16,600 199,921 178,302 118 16,800 213,098 178,302 119 16,800 213,098 178,302 120 16,900 220,009 176,931 121 17,000 227,144 176,931 122 17,000 227,144 178,302 123 17,200 242,116 178,302 124 17,200 242,116 178,302 125 17,300 249,967 178,302 126 17,300 249,967 178,302 127 17,500 266,443 178,302 128 17,500 266,443 178,302 129 17,500 266,443 178,302 130 17,600 275,084 178,302 131 17,700 284,005 178,302 132 17,700 284,005 178,302 133 17,800 293,215 176,931 1	113	16,400	187,559	178,302
116 16,500 193,642 178,302 117 16,600 199,921 178,302 118 16,800 213,098 178,302 119 16,800 213,098 178,302 120 16,900 220,009 176,931 121 17,000 227,144 176,931 122 17,000 227,144 178,302 123 17,200 242,116 178,302 124 17,200 242,116 178,302 125 17,300 249,967 178,302 126 17,300 249,967 178,302 127 17,500 266,443 178,302 128 17,500 266,443 178,302 129 17,500 266,443 178,302 130 17,600 275,084 178,302 131 17,700 284,005 178,302 132 17,700 284,005 178,302 133 17,800 293,215 176,931 134 18,000 312,541 176,931	114	16,400	187,559	178,302
117 16,600 199,921 178,302 118 16,800 213,098 178,302 119 16,800 213,098 178,302 120 16,900 220,009 176,931 121 17,000 227,144 176,931 122 17,000 227,144 178,302 123 17,200 242,116 178,302 124 17,200 242,116 178,302 125 17,300 249,967 178,302 126 17,300 249,967 178,302 127 17,500 266,443 178,302 128 17,500 266,443 178,302 129 17,500 266,443 178,302 130 17,600 275,084 178,302 131 17,700 284,005 178,302 132 17,700 284,005 178,302 133 17,800 293,215 176,931 134 18,000 312,541 176,931	115	16,500	193,642	178,302
118 16,800 213,098 178,302 119 16,800 213,098 178,302 120 16,900 220,009 176,931 121 17,000 227,144 176,931 122 17,000 227,144 178,302 123 17,200 242,116 178,302 124 17,200 242,116 178,302 125 17,300 249,967 178,302 126 17,300 249,967 178,302 127 17,500 266,443 178,302 128 17,500 266,443 178,302 129 17,500 266,443 178,302 130 17,600 275,084 178,302 131 17,700 284,005 178,302 132 17,700 284,005 178,302 133 17,800 293,215 176,931 134 18,000 312,541 176,931	116	16,500	193,642	178,302
119 16,800 213,098 178,302 120 16,900 220,009 176,931 121 17,000 227,144 176,931 122 17,000 227,144 178,302 123 17,200 242,116 178,302 124 17,200 242,116 178,302 125 17,300 249,967 178,302 126 17,300 249,967 178,302 127 17,500 266,443 178,302 128 17,500 266,443 178,302 129 17,500 266,443 178,302 130 17,600 275,084 178,302 131 17,700 284,005 178,302 132 17,700 284,005 178,302 133 17,800 293,215 176,931 134 18,000 312,541 176,931	117	16,600	199,921	178,302
120 16,900 220,009 176,931 121 17,000 227,144 176,931 122 17,000 227,144 178,302 123 17,200 242,116 178,302 124 17,200 242,116 178,302 125 17,300 249,967 178,302 126 17,300 249,967 178,302 127 17,500 266,443 178,302 128 17,500 266,443 178,302 129 17,500 266,443 178,302 130 17,600 275,084 178,302 131 17,700 284,005 178,302 132 17,700 284,005 178,302 133 17,800 293,215 176,931 134 18,000 312,541 176,931	118	16,800	213,098	178,302
121 17,000 227,144 176,931 122 17,000 227,144 178,302 123 17,200 242,116 178,302 124 17,200 242,116 178,302 125 17,300 249,967 178,302 126 17,300 249,967 178,302 127 17,500 266,443 178,302 128 17,500 266,443 178,302 129 17,500 266,443 178,302 130 17,600 275,084 178,302 131 17,700 284,005 178,302 132 17,700 284,005 178,302 133 17,800 293,215 176,931 134 18,000 312,541 176,931	119	16,800	213,098	178,302
122 17,000 227,144 178,302 123 17,200 242,116 178,302 124 17,200 242,116 178,302 125 17,300 249,967 178,302 126 17,300 249,967 178,302 127 17,500 266,443 178,302 128 17,500 266,443 178,302 129 17,500 266,443 178,302 130 17,600 275,084 178,302 131 17,700 284,005 178,302 132 17,700 284,005 178,302 133 17,800 293,215 176,931 134 18,000 312,541 176,931	120	16,900	220,009	176,931
123 17,200 242,116 178,302 124 17,200 242,116 178,302 125 17,300 249,967 178,302 126 17,300 249,967 178,302 127 17,500 266,443 178,302 128 17,500 266,443 178,302 129 17,500 266,443 178,302 130 17,600 275,084 178,302 131 17,700 284,005 178,302 132 17,700 284,005 178,302 133 17,800 293,215 176,931 134 18,000 312,541 176,931	121	17,000	227,144	176,931
124 17,200 242,116 178,302 125 17,300 249,967 178,302 126 17,300 249,967 178,302 127 17,500 266,443 178,302 128 17,500 266,443 178,302 129 17,500 266,443 178,302 130 17,600 275,084 178,302 131 17,700 284,005 178,302 132 17,700 284,005 178,302 133 17,800 293,215 176,931 134 18,000 312,541 176,931	122	17,000	227,144	178,302
125 17,300 249,967 178,302 126 17,300 249,967 178,302 127 17,500 266,443 178,302 128 17,500 266,443 178,302 129 17,500 266,443 178,302 130 17,600 275,084 178,302 131 17,700 284,005 178,302 132 17,700 284,005 178,302 133 17,800 293,215 176,931 134 18,000 312,541 176,931	123	17,200	242,116	178,302
126 17,300 249,967 178,302 127 17,500 266,443 178,302 128 17,500 266,443 178,302 129 17,500 266,443 178,302 130 17,600 275,084 178,302 131 17,700 284,005 178,302 132 17,700 284,005 178,302 133 17,800 293,215 176,931 134 18,000 312,541 176,931	124	17,200	242,116	178,302
127 17,500 266,443 178,302 128 17,500 266,443 178,302 129 17,500 266,443 178,302 130 17,600 275,084 178,302 131 17,700 284,005 178,302 132 17,700 284,005 178,302 133 17,800 293,215 176,931 134 18,000 312,541 176,931	125	17,300	249,967	178,302
128 17,500 266,443 178,302 129 17,500 266,443 178,302 130 17,600 275,084 178,302 131 17,700 284,005 178,302 132 17,700 284,005 178,302 133 17,800 293,215 176,931 134 18,000 312,541 176,931	126	17,300	249,967	178,302
129 17,500 266,443 178,302 130 17,600 275,084 178,302 131 17,700 284,005 178,302 132 17,700 284,005 178,302 133 17,800 293,215 176,931 134 18,000 312,541 176,931	127	17,500	266,443	178,302
130 17,600 275,084 178,302 131 17,700 284,005 178,302 132 17,700 284,005 178,302 133 17,800 293,215 176,931 134 18,000 312,541 176,931	128	17,500	266,443	178,302
131 17,700 284,005 178,302 132 17,700 284,005 178,302 133 17,800 293,215 176,931 134 18,000 312,541 176,931	129	17,500	266,443	178,302
132 17,700 284,005 178,302 133 17,800 293,215 176,931 134 18,000 312,541 176,931	130	17,600	275,084	178,302
133 17,800 293,215 176,931 134 18,000 312,541 176,931	131	17,700	284,005	178,302
134 18,000 312,541 176,931	132	17,700	284,005	178,302
	133	17,800	293,215	176,931
135 18,000 312,541 178,302	134	18,000	312,541	176,931
	135	18,000	312,541	178,302

136 18,000 312,541 178,302 137 18,000 312,541 178,302 138 18,000 312,541 178,302 139 18,100 322,677 178,302 140 18,200 333,141 178,302 141 18,200 333,141 178,302 142 18,200 333,141 178,302 143 18,300 343,945 178,302 144 18,400 355,099 178,302 145 18,500 366,615 178,302 146 18,600 378,505 176,931 147 18,600 378,505 176,931 148 18,700 390,779 178,302 149 18,700 390,779 178,302 150 18,800 403,452 178,302 151 18,800 403,452 178,302 152 18,900 416,536 178,302 154 19,000 430,045 178,302				1
138 18,000 312,541 178,302 139 18,100 322,677 178,302 140 18,200 333,141 178,302 141 18,200 333,141 178,302 142 18,200 333,141 178,302 143 18,300 343,945 178,302 144 18,400 355,099 178,302 145 18,500 366,615 178,302 146 18,600 378,505 176,931 147 18,600 378,505 176,931 148 18,700 390,779 178,302 149 18,700 390,779 178,302 150 18,800 403,452 178,302 151 18,800 403,452 178,302 152 18,900 416,536 178,302 153 18,900 416,536 178,302 154 19,000 430,045 178,302 155 19,100 443,991 178,302	136	18,000	312,541	178,302
139 18,100 322,677 178,302 140 18,200 333,141 178,302 141 18,200 333,141 178,302 142 18,200 333,141 178,302 143 18,300 343,945 178,302 144 18,400 355,099 178,302 145 18,500 366,615 178,302 146 18,600 378,505 176,931 147 18,600 378,505 176,931 148 18,700 390,779 178,302 149 18,700 390,779 178,302 150 18,800 403,452 178,302 151 18,800 403,452 178,302 152 18,900 416,536 178,302 153 18,900 416,536 178,302 154 19,000 430,045 178,302 155 19,100 443,991 178,302 156 19,200 458,390 178,302	137	18,000	312,541	178,302
140 18,200 333,141 178,302 141 18,200 333,141 178,302 142 18,200 333,141 178,302 143 18,300 343,945 178,302 144 18,400 355,099 178,302 145 18,500 366,615 178,302 146 18,600 378,505 176,931 147 18,600 378,505 176,931 148 18,700 390,779 178,302 150 18,800 403,452 178,302 151 18,800 403,452 178,302 152 18,900 416,536 178,302 153 18,900 416,536 178,302 154 19,000 430,045 178,302 155 19,100 443,991 178,302 156 19,200 458,390 178,302 157 19,300 473,255 178,302 158 19,400 488,603 178,302	138	18,000	312,541	178,302
141 18,200 333,141 178,302 142 18,200 333,141 178,302 143 18,300 343,945 178,302 144 18,400 355,099 178,302 145 18,500 366,615 178,302 146 18,600 378,505 176,931 147 18,600 378,505 176,931 148 18,700 390,779 178,302 149 18,700 390,779 178,302 150 18,800 403,452 178,302 151 18,800 403,452 178,302 152 18,900 416,536 178,302 153 18,900 416,536 178,302 154 19,000 430,045 178,302 155 19,100 443,991 178,302 156 19,200 458,390 178,302 157 19,300 473,255 178,302 158 19,400 488,603 178,302	139	18,100	322,677	178,302
142 18,200 333,141 178,302 143 18,300 343,945 178,302 144 18,400 355,099 178,302 145 18,500 366,615 178,302 146 18,600 378,505 176,931 147 18,600 378,505 176,931 148 18,700 390,779 178,302 149 18,700 390,779 178,302 150 18,800 403,452 178,302 151 18,800 403,452 178,302 152 18,900 416,536 178,302 153 18,900 416,536 178,302 154 19,000 430,045 178,302 155 19,100 443,991 178,302 156 19,200 458,390 178,302 157 19,300 473,255 178,302 158 19,400 488,603 178,302 159 19,400 488,603 178,302	140	18,200	333,141	178,302
143 18,300 343,945 178,302 144 18,400 355,099 178,302 145 18,500 366,615 178,302 146 18,600 378,505 176,931 147 18,600 378,505 176,931 148 18,700 390,779 178,302 149 18,700 390,779 178,302 150 18,800 403,452 178,302 151 18,800 403,452 178,302 152 18,900 416,536 178,302 153 18,900 416,536 178,302 154 19,000 430,045 178,302 155 19,100 443,991 178,302 156 19,200 458,390 178,302 157 19,300 473,255 178,302 158 19,400 488,603 178,302 159 19,400 488,603 178,302 160 19,600 520,807 176,931	141	18,200	333,141	178,302
144 18,400 355,099 178,302 145 18,500 366,615 178,302 146 18,600 378,505 176,931 147 18,600 378,505 176,931 148 18,700 390,779 178,302 149 18,700 390,779 178,302 150 18,800 403,452 178,302 151 18,800 403,452 178,302 152 18,900 416,536 178,302 153 18,900 416,536 178,302 154 19,000 430,045 178,302 155 19,100 443,991 178,302 156 19,200 458,390 178,302 157 19,300 473,255 178,302 158 19,400 488,603 178,302 159 19,400 488,603 178,302 160 19,600 520,807 176,931 161 19,700 537,697 178,302	142	18,200	333,141	178,302
145 18,500 366,615 178,302 146 18,600 378,505 176,931 147 18,600 378,505 176,931 148 18,700 390,779 178,302 149 18,700 390,779 178,302 150 18,800 403,452 178,302 151 18,800 403,452 178,302 152 18,900 416,536 178,302 153 18,900 416,536 178,302 154 19,000 430,045 178,302 155 19,100 443,991 178,302 156 19,200 458,390 178,302 157 19,300 473,255 178,302 158 19,400 488,603 178,302 159 19,400 488,603 178,302 160 19,600 520,807 176,931 161 19,700 537,697 178,302 163 19,800 555,135 178,302	143	18,300	343,945	178,302
146 18,600 378,505 176,931 147 18,600 378,505 176,931 148 18,700 390,779 178,302 149 18,700 390,779 178,302 150 18,800 403,452 178,302 151 18,800 403,452 178,302 152 18,900 416,536 178,302 153 18,900 416,536 178,302 154 19,000 430,045 178,302 155 19,100 443,991 178,302 156 19,200 458,390 178,302 157 19,300 473,255 178,302 158 19,400 488,603 178,302 159 19,400 488,603 178,302 160 19,600 520,807 176,931 161 19,700 537,697 178,302 162 19,700 537,697 178,302 163 19,800 555,135 178,302 164 19,800 555,135 178,302 1	144	18,400	355,099	178,302
147 18,600 378,505 176,931 148 18,700 390,779 178,302 149 18,700 390,779 178,302 150 18,800 403,452 178,302 151 18,800 403,452 178,302 152 18,900 416,536 178,302 153 18,900 416,536 178,302 154 19,000 430,045 178,302 155 19,100 443,991 178,302 156 19,200 458,390 178,302 157 19,300 473,255 178,302 158 19,400 488,603 178,302 159 19,400 488,603 178,302 160 19,600 520,807 176,931 161 19,700 537,697 178,302 163 19,800 555,135 178,302 164 19,800 555,135 178,302 165 19,800 555,135 178,302 166 19,800 555,135 178,302 1	145	18,500	366,615	178,302
148 18,700 390,779 178,302 149 18,700 390,779 178,302 150 18,800 403,452 178,302 151 18,800 403,452 178,302 152 18,900 416,536 178,302 153 18,900 416,536 178,302 154 19,000 430,045 178,302 155 19,100 443,991 178,302 156 19,200 458,390 178,302 157 19,300 473,255 178,302 158 19,400 488,603 178,302 159 19,400 488,603 178,302 160 19,600 520,807 176,931 161 19,700 537,697 178,302 162 19,700 537,697 178,302 163 19,800 555,135 178,302 165 19,800 555,135 178,302 166 19,800 555,135 178,302	146	18,600	378,505	176,931
149 18,700 390,779 178,302 150 18,800 403,452 178,302 151 18,800 403,452 178,302 152 18,900 416,536 178,302 153 18,900 416,536 178,302 154 19,000 430,045 178,302 155 19,100 443,991 178,302 156 19,200 458,390 178,302 157 19,300 473,255 178,302 158 19,400 488,603 178,302 159 19,400 488,603 178,302 160 19,600 520,807 176,931 161 19,700 537,697 178,302 162 19,700 537,697 178,302 163 19,800 555,135 178,302 164 19,800 555,135 178,302 165 19,800 555,135 178,302 166 19,800 555,135 178,302 167 19,900 573,138 178,302 1	147	18,600	378,505	176,931
150 18,800 403,452 178,302 151 18,800 403,452 178,302 152 18,900 416,536 178,302 153 18,900 416,536 178,302 154 19,000 430,045 178,302 155 19,100 443,991 178,302 156 19,200 458,390 178,302 157 19,300 473,255 178,302 158 19,400 488,603 178,302 159 19,400 488,603 178,302 160 19,600 520,807 176,931 161 19,700 537,697 178,302 162 19,700 537,697 178,302 163 19,800 555,135 178,302 164 19,800 555,135 178,302 165 19,800 555,135 178,302 166 19,800 555,135 178,302 167 19,900 573,138 178,302	148	18,700	390,779	178,302
151 18,800 403,452 178,302 152 18,900 416,536 178,302 153 18,900 416,536 178,302 154 19,000 430,045 178,302 155 19,100 443,991 178,302 156 19,200 458,390 178,302 157 19,300 473,255 178,302 158 19,400 488,603 178,302 159 19,400 488,603 178,302 160 19,600 520,807 176,931 161 19,700 537,697 178,302 162 19,700 537,697 178,302 163 19,800 555,135 178,302 164 19,800 555,135 178,302 165 19,800 555,135 178,302 166 19,800 555,135 178,302 167 19,900 573,138 178,302 168 20,000 591,724 178,302	149	18,700	390,779	178,302
152 18,900 416,536 178,302 153 18,900 416,536 178,302 154 19,000 430,045 178,302 155 19,100 443,991 178,302 156 19,200 458,390 178,302 157 19,300 473,255 178,302 158 19,400 488,603 178,302 159 19,400 488,603 178,302 160 19,600 520,807 176,931 161 19,700 537,697 178,302 162 19,700 537,697 178,302 163 19,800 555,135 178,302 164 19,800 555,135 178,302 165 19,800 555,135 178,302 166 19,800 555,135 178,302 167 19,900 573,138 178,302 168 20,000 591,724 178,302 169 20,000 591,724 178,302	150	18,800	403,452	178,302
153 18,900 416,536 178,302 154 19,000 430,045 178,302 155 19,100 443,991 178,302 156 19,200 458,390 178,302 157 19,300 473,255 178,302 158 19,400 488,603 178,302 159 19,400 488,603 178,302 160 19,600 520,807 176,931 161 19,700 537,697 178,302 162 19,700 537,697 178,302 163 19,800 555,135 178,302 164 19,800 555,135 178,302 165 19,800 555,135 178,302 166 19,800 555,135 178,302 167 19,900 573,138 178,302 168 20,000 591,724 178,302 169 20,000 591,724 178,302	151	18,800	403,452	178,302
154 19,000 430,045 178,302 155 19,100 443,991 178,302 156 19,200 458,390 178,302 157 19,300 473,255 178,302 158 19,400 488,603 178,302 159 19,400 488,603 178,302 160 19,600 520,807 176,931 161 19,700 537,697 178,302 162 19,700 537,697 178,302 163 19,800 555,135 178,302 164 19,800 555,135 178,302 165 19,800 555,135 178,302 166 19,800 555,135 178,302 167 19,900 573,138 178,302 168 20,000 591,724 178,302 169 20,000 591,724 178,302	152	18,900	416,536	178,302
155 19,100 443,991 178,302 156 19,200 458,390 178,302 157 19,300 473,255 178,302 158 19,400 488,603 178,302 159 19,400 488,603 178,302 160 19,600 520,807 176,931 161 19,700 537,697 178,302 162 19,700 537,697 178,302 163 19,800 555,135 178,302 164 19,800 555,135 178,302 165 19,800 555,135 178,302 166 19,800 555,135 178,302 167 19,900 573,138 178,302 168 20,000 591,724 178,302 169 20,000 591,724 178,302	153	18,900	416,536	178,302
156 19,200 458,390 178,302 157 19,300 473,255 178,302 158 19,400 488,603 178,302 159 19,400 488,603 178,302 160 19,600 520,807 176,931 161 19,700 537,697 178,302 162 19,700 537,697 178,302 163 19,800 555,135 178,302 164 19,800 555,135 178,302 165 19,800 555,135 178,302 166 19,800 555,135 178,302 167 19,900 573,138 178,302 168 20,000 591,724 178,302 169 20,000 591,724 178,302	154	19,000	430,045	178,302
157 19,300 473,255 178,302 158 19,400 488,603 178,302 159 19,400 488,603 178,302 160 19,600 520,807 176,931 161 19,700 537,697 178,302 162 19,700 537,697 178,302 163 19,800 555,135 178,302 164 19,800 555,135 178,302 165 19,800 555,135 178,302 166 19,800 555,135 178,302 167 19,900 573,138 178,302 168 20,000 591,724 178,302 169 20,000 591,724 178,302	155	19,100	443,991	178,302
158 19,400 488,603 178,302 159 19,400 488,603 178,302 160 19,600 520,807 176,931 161 19,700 537,697 178,302 162 19,700 537,697 178,302 163 19,800 555,135 178,302 164 19,800 555,135 178,302 165 19,800 555,135 178,302 166 19,800 555,135 178,302 167 19,900 573,138 178,302 168 20,000 591,724 178,302 169 20,000 591,724 178,302	156	19,200	458,390	178,302
159 19,400 488,603 178,302 160 19,600 520,807 176,931 161 19,700 537,697 178,302 162 19,700 537,697 178,302 163 19,800 555,135 178,302 164 19,800 555,135 178,302 165 19,800 555,135 178,302 166 19,800 555,135 178,302 167 19,900 573,138 178,302 168 20,000 591,724 178,302 169 20,000 591,724 178,302	157	19,300	473,255	178,302
160 19,600 520,807 176,931 161 19,700 537,697 178,302 162 19,700 537,697 178,302 163 19,800 555,135 178,302 164 19,800 555,135 178,302 165 19,800 555,135 178,302 166 19,800 555,135 178,302 167 19,900 573,138 178,302 168 20,000 591,724 178,302 169 20,000 591,724 178,302	158	19,400	488,603	178,302
161 19,700 537,697 178,302 162 19,700 537,697 178,302 163 19,800 555,135 178,302 164 19,800 555,135 178,302 165 19,800 555,135 178,302 166 19,800 555,135 178,302 167 19,900 573,138 178,302 168 20,000 591,724 178,302 169 20,000 591,724 178,302	159	19,400	488,603	178,302
162 19,700 537,697 178,302 163 19,800 555,135 178,302 164 19,800 555,135 178,302 165 19,800 555,135 178,302 166 19,800 555,135 178,302 167 19,900 573,138 178,302 168 20,000 591,724 178,302 169 20,000 591,724 178,302	160	19,600	520,807	176,931
163 19,800 555,135 178,302 164 19,800 555,135 178,302 165 19,800 555,135 178,302 166 19,800 555,135 178,302 167 19,900 573,138 178,302 168 20,000 591,724 178,302 169 20,000 591,724 178,302	161	19,700	537,697	178,302
164 19,800 555,135 178,302 165 19,800 555,135 178,302 166 19,800 555,135 178,302 167 19,900 573,138 178,302 168 20,000 591,724 178,302 169 20,000 591,724 178,302	162	19,700	537,697	178,302
165 19,800 555,135 178,302 166 19,800 555,135 178,302 167 19,900 573,138 178,302 168 20,000 591,724 178,302 169 20,000 591,724 178,302	163	19,800	555,135	178,302
166 19,800 555,135 178,302 167 19,900 573,138 178,302 168 20,000 591,724 178,302 169 20,000 591,724 178,302	164	19,800	555,135	178,302
167 19,900 573,138 178,302 168 20,000 591,724 178,302 169 20,000 591,724 178,302	165	19,800	555,135	178,302
168 20,000 591,724 178,302 169 20,000 591,724 178,302	166	19,800	555,135	178,302
169 20,000 591,724 178,302	167	19,900	573,138	178,302
	168	20,000	591,724	178,302
170 20,300 651,180 178,302	169	20,000	591,724	178,302
	170	20,300	651,180	178,302

171	20,600	716,610	178,302
172	20,600	716,610	178,302
173	20,600	716,610	176,931
174	20,600	716,610	178,302
175	20,700	739,850	178,302
176	20,900	788,615	178,302
177	20,900	788,615	178,302
178	21,000	814,189	178,302
179	21,100	840,594	178,302
180	21,200	867,854	178,302
181	21,200	867,854	178,302
182	21,400	925,056	178,302
183	21,500	955,055	178,302
184	21,500	955,055	178,302
185	21,600	986,028	178,302
186	21,700	1018,004	178,302
187	21,800	1051,018	174,983
188	22,100	1156,624	174,983
189	22,200	1194,133	174,983
190	22,500	1314,118	174,983
191	22,700	1400,734	174,983
192	23,000	1541,478	174,983
193	23,200	1643,080	174,983
194	23,200	1643,080	174,983

Anexo 4. Panel fotográfico.

Foto 1. Acceso al área de estudio.

Foto 2. Plantación de *Tectona grandis*.

Foto 3. Vista de la plantación.

Foto 4. Toma de datos en la plantación.

Foto 5. Toma de datos en la plantación.

Foto 6. Toma de datos en la plantación.