UNIVERSIDAD NACIONAL AMAZÓNICA DE MADRE DE DIOS

FACULTAD DE INGENIERÍA

Carrera Profesional de Ingeniería Forestal y Medio Ambiente

TÍTULO

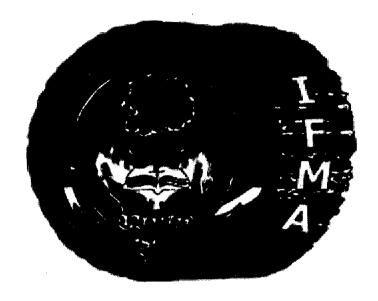
DETERMINACION DE LA RESERVA DE CARBONO EN UN BOSQUE DE TERRAZA ALTA MEDIANTE EL METODO DE ECUACIONES ALOMETRICAS, FUNDO EL BOSQUE -LAS PIEDRAS - MADRE DE DIOS Tesis Para Optar el Título Profesional de Ingeniero Forestal y Medio Ambiente

PRESENTADO POR:

Bach. Nemin Bejar Chura

Bach. Leticia Huamani Briceño

Asesor:


Ing. M.Sc. Gabriel Alarcón Aguirre

PUERTO MALDONADO, MADRE DE DIOS-PERÚ

2013

Madre de Dios, capital de la Biodiversidad del Perú

UNIVERSIDAD NACIONAL AMAZÓNICA DE MADRE DE DIOS

Carrera Profesional de Ingeniería Forestal y Medio Ambiente

TÍTULO

DETERMINACION DE LA RESERVA DE CARBONO EN UN BOSQUE DE TERRAZA ALTA MEDIANTE EL METODO DE ECUACIONES ALOMETRICAS, FUNDO EL BOSQUE -LAS PIEDRAS - MADRE DE DIOS

Bach. Nemin Bejar Chura

Bach. Leticia Huamani Briceño

Tesis Para Optar el Título Profesional de Ingeniero Forestal y Medio

Ambiente

PUERTO MALDONADO, MADRE DE DIOS, PERÚ 2013

DEDICATORIA

Nemin Bejar

A DIOS por ser mi fortaleza y mi refugio.

A mi Madre por todo el amor, fortaleza y apoyo que siempre me ha brindado.

A mi Padre por su amor y comprensión.

A mis hermanos, hermana y sobrinos, por su apoyo incondicional y amor.

A mis ángeles María y Genaro por sus valores y eterno amor.

Leticia Huamani

A DIOS por ser mi fortaleza y mi refugio.

A mi Madre por todo el amor, fortaleza y apoyo que siempre me ha brindado.

A mi Padre por su amor y comprensión.

A mis hermanos y hermana por su apoyo incondicional y amor.

AGRADECIMIENTOS

A nuestras Familias, por apoyarme brindándonos su apoyo incondicionalmente.

A la Universidad Nacional Amazónica de Madre de Dios/ Consorcio Madre de Dios, por habernos facilitado los equipos de campo durante la ejecución de campo de la tesis.

A nuestros asesor, Ing. M.Sc. Gabriel Alarcón Aguirre, por su orientación y apoyo durante la elaboración y ejecución del proyecto de tesis. Asimismo a los miembros del Jurado calificador, Ph. D. Percy A. Zevallos Póllito, Ing. Mishari García Roca, Blgs. Ruth Frisancho Vargas.

A los Docentes de la Carrera Profesional de Ingeniería Forestal y Medio Ambiente de la Universidad Nacional Amazónica de Madre de Dios, por haber compartido sus conocimientos y experiencias durante nuestra formación personal.

A, Sofer Baez, Martin Pillaca, Silva Carhurupy, Gian Carlo Siccilia, Enrrique Pacheco, quienes nos apoyaron durante el trabajo de campo en el presente trabajo de investigación.

A Lizet Achata y Linda Malatesta, por apoyarnos y facilitar el laboratorio ambiental regional de la universidad.

A todos nuestros amigos, amigas y todos los compañeros de nuestra universidad que nos brindan su apoyo y confianza.

ÍNDICE

RESU	JMEN	I
SUMA	ARY	2
INTR	ODUCCION	3
OBJE	TIVOS	5
Objeti	vo General	5
Objeti	vos Específicos	5
FORM	MULACION DE LA HIPOTESIS	5
VARI	ABLES	5
Varial	ole Dependiente	5
Varial	ole Independiente	5
CAPI	TULO I	6
MAR	CO TEORICO	6
	ntecedentes	
1.1.1	Antecedentes a nivel internacional	6
1.1.2.	Antecedentes a nivel nacional	.12
1.1.3.	Antecedentes a nivel regional	.14
1.2 R	Revisión de Literatura	.20
1.2.1	Protocolo de Kioto y mecanismo de desarrollo limpio2	20
1.2.2	Disminución de recursos y aumento de necesidades	.21
1.2.3	Servicios Ambientales	23
1.2.4	Pago por Servicios Ambientales	.25
1.2.5	Valoración Económica	.26
1.2.6F	Reservas de Carbono	.27
1.2.7	Estimación de biomasa y carbono	28
1.2.8]	Depósitos o reservorios de carbono	.31
1.2.9	Ecosistemas de bosques en el cambio climático	32
CAPI	TULO II	.38
MAT	ERIALES Y METODOS	.38
2.1.	Descripción del Área de Estudio	.38
2 1 1	Información Conceal	20

2.1.2	Ubicación Política.	40
2.1.3	Ubicación Geográfica.	40
2.1.4	Ecología, Clima y Zonas de Vida	.40
2.1.5	Fisiografía	41
2.1.6	Forestal	41
2.1.7	Vegetación	42
2.1.8	Geología	42
2.1.	Materiales, Equipos, herramientas y servicios	42
2.2.	Metodología	.43
2.2.1.	Tipo de investigación	45
2.2.2.	Estadística empleada	45
2.2.2.1	Para la determinación del número	45
2.2.2.2	Para la determinación de carbono con los datos de campo	45
2.2.2.3	Calculo de la cantidad de carbono equivalente	18
2.2.2.4	Fase de laboratorio	19
2.3 De	scripción de las fuentes a medir	51
2.3.1.	biomasa por encima del suelo	51
2.3.2.	Recolección de vegetación herbácea y hojarasca	54
2.3.3.	Inventario de tallos leñosos	54
CAPIT	TULO III	55
RESU	LTADOS	.55
3.1Pro	cesamiento de datos de campo	.55
3.1.1 E	Estimación de biomasa de los componentes	55
3.1.1.1	Biomasa de árboles grandes (árboles y fustales)	.55
3.1.2 (Cantidad de Carbono Equivalente	.59
3.1.3 T	Oneladas de Carbono por Hectárea por Familia	62
3.1.3.1	Biomasa de Arboles Pequeños (Latizal)	64
3.1.3.2	Biomasa de Herbácea (Brinzal), Materia Muerta, Hojarasca	65
3.2 Pro	ocesamiento de datos de laboratorio	.66
3.2.1B	iomasa Herbácea (Her)(Brinzal)	.67
	iomasa Hojarasca (Hoj) v Biomasa Materia Muerta (Mm)	

CONCLUSIONES	72
RECOMENDACIONES	74
BIBLIOGRAFIA	75
ANEXOS	81

INDICE DE CUADROS

Cuadro Nº 01: Biomasa y madera muerta, por región y subregión, 201029
Cuadro Nº 02: Existencias de carbono en los bosques, por región y subregión, 201030
Cuadro Nº 03: Descripción de los distintos tipos de depósitos de carbono32
Cuadro Nº 04: Reservas de carbono superficial en los sistemas de roza y quema y otros
usos alternativos, promediadas temporalmente
Cuadro N°05: Cantidad mundial de carbono presente en la vegetación y en los reservorios
de carbono hasta una profundidad de un metro35
Cuadro Nº 06: Coordenadas de Fundo "El Bosque"40
Cuadro Nº 07: Materiales, Equipos, Herramientas y Servicios
Cuadro 08: Ecuaciones alométricas para estimar la biomasa (Kg de materia seca por árbol)
a nivel local y para regiones amazónicas50
Cuadro 09: Formulas utilizadas para la obtención de biomasa por cada tipo de componente
de bosque50
Cuadro N° 10: Estimación de biomasa tC/ha según diferentes autores55
Cuadro N°11: Valores de biomasa en las 22 parcelas según las ecuaciones alométricas de
diferentes autores56
Cuadro N° 11: Carbono equivalente por toda el área60
Cuadro N°12: Valores de la biomasa para arboles
pequeños65
Cuadro N°13: Estimación de biomasa de herbácea (Her) en t/ha y distribución dentro de las
22 parcelas de muestreo
Cuadro N°14: Estimación de biomasa de hojarasca (Hoj) en t/ha y distribución dentro de
las 22 parcelas de muestreo
Cuadro N° 15: Estimación de biomasa de materia muerta (Mm) en t/ha y distribución
dentro de las 22 parcelas de muestreo
Cuadro N°16: Toneladas de carbono (T/ha) por Tipo de muestra, carbono total de las sub
muestras y arboles grandes
Cuadro N° 18: Toneladas de carbono por hectárea por familia
Cuadro N° 19: Estimación de CO2 Equivalente t/ha y distribución dentro de las 22 parcelas
de muestreo

INDICE DE FIGURAS

Figura 01. Biomasa Forestal de Bosque tropicales de 10 Países10
Figura 02. Tendencia En la Existencia de Carbono en la Biomasa Forestal, 1990-201022
Figura 03. Características de los Bosques del, Mundo 2010
Figura 04. Valores de la biomasa según deferentes autores
Figura 05. Valores de estimación de biomasa con la ecuación de Chave et al. 2005, DAP
≥5cm56
Figura 06. Especies botánicas con alta abundancia y densidad de individuos por
hectárea63
Figura 07. Estimación de biomasa de carbono por familia dentro de las 22 parcelas64
Figura 08. Toneladas de carbono por hectárea de árboles pequeños
Figura 09. Estimación de biomasa de herbácea (Her) en t/ha y distribución dentro de las 22
parcelas de muestreo
Figura 10. Figura 12. Estimación de biomasa de hojarasca (Hoj) en t/ha y distribución
dentro de las 22 parcelas de muestreo70
Figura 11. Estimación de biomasa de materia muerta (Mm) en t/ha y distribución dentro de
las 22 parcelas de muestreo71
Figura 12. Toneladas de Carbono (tC/ha) por tipo de sub muestra y arboles72
INDICE DE IMÁGENES
Imagen0 1. Mapa de Stock de Carbono de Bosques Tropicales
INDICE DE MAPAS
Mapa 0 1. Mapa de almacenamiento de Carbono en la vegetación Tropical37
Mapa 0 2. Ubicación del área de Estudio
Mapa 0 3. Distribución de las parcelas de muestreo53
INDICE DE DIAGRAMAS
Diagrama 01. Resumen de la Metodología para la Obtención de Biomasa44
Diagrama 02. Diseño de la parcela de biomasa para carbono

RESUMEN

El ámbito de estudio comprende Distrito Las Piedras, departamento de Madre de Dios, , Sector Loboyoc, Bosque de Terraza Alta, km. 17 vivero "El Bosque", con un área de 428.24 ha. margen derecho, su accesibilidad es a través del eje carretero Puerto Maldonado-Iñapari, está caracterizado por tener una topografía suave y existe una especie significativa y dominante llamado "castaño" Bertholletia. *excelsa*.; consta con un área de 428.24 ha.

Se desarrollo la metodología de Marqués 2000; en dos fases; campo y laboratorio donde la fase de campo consistió en determinar la ubicación de las 22 parcelas muestra rectangulares y 110 sub-parcelas de muestreo; donde se realizó un inventario para árboles grandes ≥10 cm DAP; en las 22 parcelas (20 x 50 m.); un inventario de árboles ≥ 2 ≤ 10 cm DAP en las 110 sub-parcelas (2 x2 m.), se colectó las muestras de hojarasca, herbácea y materia muerta para ser pesadas y se tomo muestras de 200 gr. Respectivamente, para la fase de laboratorio donde se obtuvo el peso húmedo y seco de cada una de las muestras; de 330 sub muestras las cuales se procesaron y calcularon a través de ecuaciones alométricas.

Se calculo para la biomasa estimada del componente árboles grandes del bosque que presentó un valor promedio de 271.05 tC/ha, la biomasa estimada del componente árboles pequeños con un valor promedio de 15.86 tC/ha, la biomasa estimada del componente de herbacea con un valor promedio de 3.007 tC/ha, la biomasa estimada del componente de hojarasca con un valor promedio de 5.11 tC/ha, la biomasa estimada del componente de materia muerta presento un valor promedio de 4.14 tC/ha, la cantidad de carbono equivalente estimada presentó un valor de 452.16 t CO₂-equi/ha., la cantidad de Carbono Equivalente por toda el área (t CO₂-equi). Estima un valor total de 193632.788 tCO₂-equi.

Estos datos se encuentran dentro del rango de cantidad de carbono a nivel mundial por tipo de bosque según WHRC, 2006; IPCC, 2000; FAO, 2010; Palm et al. (1999:1), para CGIAR citado por Zacune (2008).

SUMARY

The study area includes the district of Las Piedras, Madre de Dios Department, Loboyoc Sector, represented by high forest terrace, located at the right margin of the Km. 17 Inter-Oceanic Highway at the UNAMAD University scientific research area called "The Forest" and comprises an area of 428.24 ha. The accessibility is by road — via the Iñapari-Puerto Maldonado road axis. The topography is smooth and dominated by significant forest species called "castaña" (*Bertholletia excelsa*).

The methodology was developed following Marquis 2000 in two phases: a field and a laboratory phase. The field phase determined the location of the 22 sample plots and 110 sub - rectangular sampling plots, with an inventory for large trees ≥ 10 cm DAP in the 22 plots (20x50m), an inventory of trees $\geq 2 \leq 10$ cm DBH in the 110 sub-plots (2x2m). Samples collected litter, herbaceous and dead matter with a weight of 200 gr. The laboratory phase yielded the wet and dry weight of each of the samples, 330 sub-samples were processed and calculated using allometric equations.

We calculated the estimated biomass of large forest trees components which resulted in an average value of 271.05 tC / ha. The estimated biomass of small tree components had an average value of 15.86 tC / ha followed by the estimated biomass of herbaceous component that presented a value average of 3,007 tC / ha. The estimated biomass of litter component had an average value of 5.11 tC / ha while the estimated biomass of dead matter component presented an average value of 4.14 tC / ha. The estimated equivalent amount of carbon introduced a t CO2-equi/ha 452.16 value, the amount of carbon equivalent throughout the area was (t CO2 - equi) and the estimated total value was 193632.788 tCO2 - equi.

These data are within the range global carbon amount by forest type reported by WHRC in 2006, IPCC in 2000, FAO in 2010, Palm et al. in 1991 and CGIAR.

INTRODUCCION

El carbono es un componente esencial de todos los seres vivos. Existe en su mayor parte como dióxido de carbono en la atmósfera, los océanos y los combustibles fósiles (carbón, petróleo y otros hidrocarburos). El dióxido de carbono en la atmósfera es absorbido por las plantas y convertido en carbohidratos y tejidos a través de proceso de fotosíntesis, como parte del ciclo del carbono. (Lapeyre y Arevalo, 2004).

La zona tropical tiene potencial para conservar y fijar carbono. Más de la mitad de ese potencial lo provee la regeneración natural y asistida, seguida por la protección forestal y la disminución de la deforestación. La reforestación y la agrosilvicultura contribuirían con al menos la mitad de la cantidad conservada por los trópicos, los ahorros de carbono procedentes de la disminución de la deforestación y de la regeneración serían inicialmente los más elevados pero a partir del año 2025 cuando las plantaciones alcanzarían su máxima tasa de aumento de carbono, captarían prácticamente cantidades idénticas a las correspondientes a la disminución de la deforestación y a la regeneración. Hacia el año 2030 aproximadamente, los trópicos se convertirían en un potencial sumidero de carbono (Brown, 1996).

Los bosques tropicales desempeñan un papel vital en el ciclo global del carbono. Los bosques tropicales, al cubrir un área extensa y ser ecosistemas extremadamente dinámicos, regulan la cantidad de dióxido de carbono en la atmósfera mediante la fijación del mismo y su reincorporación al ciclo normal. (Lapeyre y Arevalo, 2004).

Nuestro país, una zona privilegiada con abundante y diversificada vegetación en sus bosques, viene negociando la deuda externa con los países acreedores, a cambio de la conservación de nuestros bosques naturales, sin embargo a diferencia de otros países son mínimos los costos que nos absuelven, puesto que nuestros bosques aún no se encuentran valorizadas ambientalmente, a comparación de otros. Para ello debe iniciarse estudios como el caso de los sumideros de carbono, tendientes a resolver cuestiones metodológicas tales como: estimación de la tasa de captura real de una especie o sistema en particular, cuantificación del carbono almacenado en la biomasa, entre otros. (Yepes et al. 2011).

El departamento de Madre de Dios tiene una superficie de 85 182.63 km², que representa el 6.6% del territorio Nacional y el 15.3% de la Región selva, con una superficie de área boscosa casi en su totalidad, sin embargo muchas de éstas áreas han sido usadas para la extracción de oro, madera, para la producción de cultivos anuales, pastos, sistemas perensnes y en algunos casos agroforestería, habiéndose reducido la capacidad de capturar o fijar carbono. (Yepes *et al.* 2011).

Bajo este escenario es necesario tomar acciones inmediatas para el manejo sostenible de nuestros bosques, destinados a la producción de madera y alternándolo con la reforestación, se obtendría un mayor volumen de biomasa y a la vez se lograría diversificar la producción en el tiempo. Sin embargo existe un concepto equivocado en cuanto se trasciende que la tala de árboles para madera, es otra fuente de emisiones de gases de efecto invernadero, pues se considera que ello libera el carbono retenido en la biomasa de las especies arbóreas; por lo contrario el carbono se mantiene retenido por más tiempo en los productos que deriva de la madera así como muebles, parquet, cielo rasos, zócalos, construcciones y otros. (Yepes *et al.* 2011).

En este estudio se pretende cuantificar la cantidad de carbono almacenado en un bosque de terraza alta. Esta característica de capturar carbono se da en la biomasa aérea y subterránea. Por tanto, el trabajo tiene por finalidad contribuir a futuras investigaciones para la valoración económica de servicios ambientales.

OBJETIVOS

Objetivo General

Cuantificar la reserva de stock carbono en un Bosque de Terraza Alta del Fundo El Bosque de la UNAMAD en el sector Loboyoc, Distrito Las Piedras.

Objetivos Específicos

- Determinación de reserva de la biomasa aérea y carbono almacenado dentro del bosque de terraza alta.
- Estimar la cantidad de carbono equivalente (CO2-equi) dentro del bosque de terraza alta.
- > Determinar el contenido de carbono por familia, género y especie representativas
- Determinación de la biomasa y carbono almacenado herbáceo dentro del bosque de terraza alta.
- Determinación de la biomasa y carbono almacenado de hojarasca y materia muerta dentro del bosque de terraza alta.

FORMULACIÓN DE LA HIPÓTESIS

H₀: La cantidad stock de carbono estimado del bosque húmedo tropical, es inferior a 247.4 – 424 tC/ha (Valores estimados por Saatchi 2011, FAO 2010).

H_i: La cantidad stock de carbono estimado del bosque húmedo tropical, es superior a 247.4 – 424 tC/ha (Valores estimados por Saatchi 2011, FAO 2010).

VARIABLES

Variable Dependiente

- Cantidad de reserva de carbono existente en el área de estudio.
- Cantidad de biomasa existente en el área de estudio.
- Carbono equivalente

Variable Independiente

- El diámetro a la altura del pecho (DAP)
- Altura total de los árboles
- Densidad de la madera.

CAPÍTULO I

MARCO TEORICO

1.1 Antecedentes

1.1.1 Antecedentes a nivel internacional

- Anderson (2012), analizó los patrones a gran escala de las propiedades de los ecosistemas forestales en la Amazonía en base a observaciones de campo y satélite; primero evaluó las propiedades forestales biofísicas que influyen directamente en la dinámica del carbono en la Amazonía (densidad de la madera, biomasa aérea, la altura del árbol, el tamaño de la corona y la productividad de la madera); segundo, evaluó los patrones fenológicos a escala macro y tercero, puso en discusión los estudios recientes derivados de los datos de teledetección. La revisión indica que los bosques de crecimiento lento de la Amazonía Central y Oriental (este), donde los suelos son más pobres, tienen significativamente biomasa encima del suelo (AGB) más alta y una mayor densidad de la madera, los árboles son más altos que en los rodales en el Noroeste y el Suroeste de la Amazonía. Sin embargo la productividad y el dinamismo del bosque, es mayor en la Amazonia occidental (oeste) que en los bosques centrales y orientales (este). Estudios recientes basados enteramente en datos de campo (Malhi et al. 2006) y un conjunto de datos de teledetección (Saatchi et al. 2007), sugieren una alta biomasa (300 - 400 t/ha) en el noreste de la Amazonía, en la zona central oeste del río Trombetas al oeste del río Negro; una menor biomasa (250 - 300 t/ha) en el principal canal del río Amazonas, y en las llanuras inundables de Igapó y Várzea y entre 200 - 300 t/ha en el Oeste y Sur de la Amazonía. A escala global, la AGB se ha estimado recientemente mediante el uso de una combinación de sensores remotos y datos de campo: los datos de altura de los bosques globales fueron medidos por el sistema de altímetro Láser Geociencias (GLAS), a bordo del Ice Cloud y el satélite terrestre de elevación (ICESat), el Spectroradiometro de Imagen con Resolucion Moderada (MODIS), la misión topografica Radar Shuttle (SRTM) y el dispersómetro rápido (QSCAT) (Saatchi et al. 2011). La comparación de este AGB global con el mapa elaborado por (Saatchi et al. 2007) reveló en este nuevo conjunto de datos biomasas más bajas en la cuenca del Río Negro, regióncentral, y una mayor biomasa en la Amazonía oriental (este). La Amazonía occidental es una

región que presenta una menor biomasa seguidas por las regiones centrales (Malhi *et al.* 2006; Baker *et al.* 2004a; Baker *et al.* 2004b y Anderson *et al.* 2009) y se podría hipotetizar que los bosques de bambú, presentes en esta región, podría tener efectos sobre las mediciones Lidar. Se sugiere que para mejorar la comprensión de los patrones a gran escala en los bosques amazónicos, considerar imprescindibles análisis integrados que combinen las nuevas tecnologías en teledetección y datos de campo ecológicos a largo plazo.

- Chave et al. (2008), estimaron la biomasa encima del suelo (AGB) y productividad primaria neta (PPN) en un Bosque Lluvioso Oriental de Sudamérica, en la Estación de Campo Nouragues, Guyana Francesa Central. Se evaluaron en 2 parcelas: el Grand Plateau (GP) de 10 has y el Petit Plateau (PP) de 12 has, establecidas y evaluadas ambas en 1992–1994 (censo 1), luego en 2000–2002 (censo 2). Se censaron individuos (árboles y lianas) con DAP ≥10 cm, reportando la cantidad de 12630 individuos, densidad de tallos en 512 por ha, área basal en 30 m2/ha, la AGB en GP (365.7 a 366.2 t/ha) y PP (380.8 a 403 t/ha). El total estimado de PPN fue de 8.81 t C/ha/año, la productividad de madera muerta contribuye en 4.16 t C/ha/año. La caída de residuos pequeños contribuye a 4.65 t C/ha/año con 3.16 t C/ha/año en las hojas, 1.10 t C/ha/año para ramas, y 0.39 t C/ha/año para frutos y flores. El incremento en AGB para árboles y lianas coincide con la hipótesis de que el cambio en el funcionamiento de los bosques lluviosos amazónicos se debe a cambios ambientales, por lo que se sugirió observar la disminución de la densidad de tallos.
- WHRC (2012), analizó el almacenamiento de carbono en bosques tropicales del mundo y presentó un nuevo mapa para ayudar a países en vías de desarrollo a rastrear la deforestación. La vegetación tropical del mundo contiene alrededor de 21% más de carbono que en estudios anteriores. Usando una combinación de sensores remotos y datos de campo, los científicos del Centro de Investigación Woods Hole (WHRC), de la Universidad de Boston y la Universidad de Maryland fueron capaces de producir el primer mapa "de pared a pared" (con una resolución espacial de 500x500 mts.) de almacenamiento de carbono de los bosques, matorrales y sabanas en los trópicos de África, Asia y América del Sur. Los científicos estiman que los bosques tropicales en América almacenan cerca de 118

mil millones de toneladas de carbono, un quinto más que lo indicado por los resultados anteriores. El resultado es un mapa de densidad de carbono en los trópicos con un nivel de consistencia y exactitud nunca antes alcanzado en mediciones globales ¿donde el carbono se acumula? Y ¿donde se está perdiendo? "El trabajo es importante por dos razones," dijo el co- autor y científico Richard A. Houghton. "En primer lugar, proporciona un mapa de alta resolución de la densidad de la biomasa encima del suelo o aérea de los bosques tropicales del mundo". Mapas anteriores eran de mucha menor resolución y produjeron burdas estimaciones muy diferentes tanto en regionales totales y la distribución espacial. "En segundo lugar, el documento calcula una nueva estimación de emisiones de carbono a partir del cambio del uso de la tierra en los trópicos". Según el mapa de densidad de carbono elaborado por WHRC (2012) se observa que la vegetación del bosque del departamento de Madre de Dios, Perú presenta un rango de 100 a 150 t C/ha.

- Selaya (2011), estimó el contenido de carbono en la biomasa encima del suelo, carbono del suelo, hojarasca y vegetación herbácea en los bosques de la localidad de Cobija, departamento de Pando, Bolivia, en parcelas permanentes de monitoreo (PPM) y transectos (T). Se instalaron 2 PPM de 1 ha en el Centro de Investigación e Interpretación de la Biodiversidad (CIIB), en el predio San Silvestre respectivamente y 3 transectos botánicos de 0.05 ha en un predio castañero. Se estimó la biomasa y el carbono mediante la ecuación alométrica de Chave et al. (2005) que incluye diámetro y densidad de madera aplicada a bosques húmedos. El contenido reportado de carbono en la biomasa encima del suelo, suelo, herbáceas y hojarasca en la PPM-CIIB fue 161 t C/ha, 3 t C/ha, 0.48 t C/ha, 3.1 t C/ha; PPM-SS 183 t C/ha, 3 t C/ha, 0.31 t C/ha, 4.75 t C/ha; T- SS3 231 t C/ha, 2 t C/ha, 0.52 t C/ha, 6.6 t C/ha; T-SS4 184 t C/ha, 2 t C/ha, 0.67 t C/ha, 3.22 t C/ha y Bosque secundario 116 t C/ha, 2 t C/ha, 0.48 t C/ha, 2.15 t C/ha respectivamente. El contenido de carbono estimado en promedio es de 182 t C/ha, los resultados muestran que más del 90% del carbono está almacenado en la biomasa aérea y el resto en el suelo y la hojarasca. Los valores estimados se encuentran en el rango para la región (IBIF, 2009). Estudios de este tipo son importantes para determinar políticas de valoración de los servicios ambientales de los bosques de la región.

- Saatchi et al. (2011), determinaron un mapa de referencia de stock de carbono forestal en las regiones tropicales de tres continentes sobre 2,5 millones de hectáreas, abarcando todos los bosques tropicales, para la década de 2000, que será muy valiosa para la evaluación de la reducción de emisiones por deforestación y degradación (REDD), tanto en los proyectos y las escalas nacionales. Se ha estimado el stock total de carbono en la biomasa viva (por encima y por debajo del suelo), utilizando una combinación de los datos de 4079 parcelas de inventario in situ y la detección por satélite y láser (LIDAR) y muestras de la estructura del bosque para estimar el almacenamiento de carbono, además de imágenes ópticas y de microondas (resolución de 1 km) para extrapolar sobre el paisaje. La biomasa del stock total de carbono de los bosques en la región de estudio se estima en 247 Gt C, con 193 Gt de carbono almacenado encima del suelo y 54 Gt C almacenado en las raíces. Los bosques en América Latina, África subsahariana y el sudeste asiático representaron el 49%, 25% y el 26% de la superficie total, respectivamente. Mediante el análisis de los errores propagados a través del proceso de estimación, la incertidumbre a nivel de píxel (100 ha) fue de ± 6% a ± 53%, pero se vió limitada en el proyecto típico (10.000 ha) y nacionales (más de 1.000.000 ha) en las escalas de \pm 5% y aprox. \pm 1%, respectivamente. El mapa patrones regionales de referencia y proporciona estimaciones muestra los comparables metodológicamente de las reservas de carbono para 75 países en desarrollo que en las evaluaciones anteriores eran pobres o incompletos. Según el mapa de biomasa encima del suelo (AGB) y el stock de carbono total elaborado por Saatchi et al. (2011), registra para Perú 320 t/ha de biomasa total; 160 t C/ha stock de carbono total, sin embargo para el departamento de Madre de Dios reporta valores de AGB en 250 - 300 t/ha y el stock de carbono en 125 - 150 t C/ha.

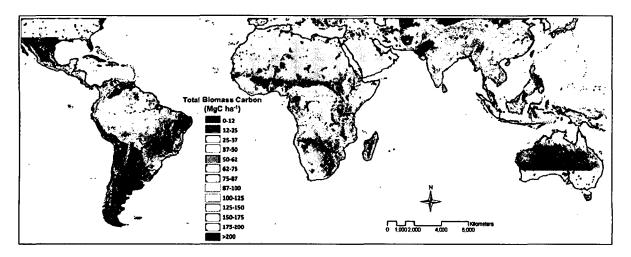


Imagen N° 01: Mapa de stock de carbono de bosques tropicales.

Fuente: Saatchi et al. (2011).

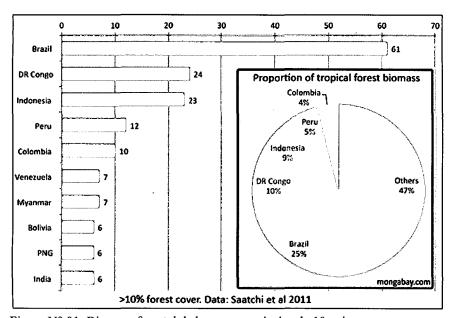


Figura N° 01: Biomasa forestal de bosques tropicales de 10 paises.

Fuente: Saatchi et al. (2011).

- Yepes et al. (2011), estimaron las reservas y pérdidas de carbono por deforestación en los bosques del departamento de Antioquia, Colombia, en un gradiente altitudinal de 8 a 2800 msnm. Para estimar la biomasa aérea (BA) se empleó información de dasometria (diámetro a la altura de pecho (DAP), altura, densidad entre otros) provenientes de 16 parcelas permanentes de 1 ha, donde se midió la vegetación leñosa con DAP≥10 cm. Se cuantificó la deforestación a nivel departamental usando imágenes de sensores remotos MODIS para el período 2000-2007. Los resultados evidencian que la BA y los contenidos de carbono en los bosques naturales de Antioquia, presentan una relación inversa con la altitud (Aiba

- & Kitayama 1999, Richards 1996 y Wang et al. 2006). La BA promedio fue 244 ±63 t/ha y la tasa de deforestación en el período 2000- 2007 fue 25.279 ha/año. Durante este período se perdieron en total 176.950 has de bosque natural, con las cuales se emitieron potencialmente a la atmósfera 7 916 129 Gg CO₂. En Antioquia, posiblemente, problemáticas como la deforestación, pueden llegar a destruir considerablemente estos ecosistemas, ocasionando la pérdida de servicios ecosistémicos importantes como el almacenamiento de carbono.
- Chacón P, Leblanc A, Russo R, (2007), La conversión de pasturas abandonadas a bosques secundarios, constituye una alternativa para incrementar la fijación de carbono, contribuyendo así a la mitigación del calentamiento global. En la presente investigación se determinó el carbono fijado en la biomasa aérea de un bosque secundario de 15 años, ubicado en la región tropical húmeda de Costa Rica. Diez parcelas de 100 m2 fueron cosechadas separadamente según el estrato (mantillo, herbáceas, lianas, sotobosque, latizales), para la determinación directa de su biomasa y del carbono fijado. Datos de diámetro a la altura del pecho (DAP), altura y densidad fueron tomados en los fustales para la determinación indirecta de su volumen y el C fijado. La biomasa aérea total fue de (99.9 ± 15.7) Mg ha-1. Se fijaron 46.4 Mg ha-1 de C, con una tasa de fijación de 3.1 Mg ha-1 de C por año.
- Sierra *et al.* (2007), Las reservas de carbono en biomasa aérea viva y la biomasa subterránea, necromasa y los suelos se midieron en un bosque heterogéneo compuesta de bosque secundario y primario. Un total de 110 parcelas permanentes se utiliza para estimar el tamaño de las reservas de carbono. biomasa local ecuaciones fueron desarrollados y utilizados para estimar la biomasa aérea y la biomasa de raíces gruesas para cada parcela. Vegetación herbácea, raíces finas, gruesa y fina arena y carbono en el suelo a 4 m de profundidad se midieron subparcelas. En los bosques primarios, se estimaron como 383.7±55.5 Mg C ha? 1. De esta cantidad, carbono orgánico del suelo a 4 m de profundidad representó el 59%, la biomasa aérea total del 29%, el total de biomasa bajo el suelo 10%, y necromasa 2%. En los bosques secundarios, TCS era 228.2 ± 13.1 Mg C ha-1 y carbono orgánico del suelo de 4 m de profundidad representaron el 84% de esta cantidad. La biomasa total sobre el suelo representa sólo el 9%, la biomasa total bajo tierra 5% y necromasa total de 1% de TCS en bosques secundarios. De este

estudio se concluye que las estimaciones de biomasa aérea subestiman en gran medida las existencias de carbono en los ecosistemas forestales. Además, se sugiere que los bosques heterogéneos imponen retos adicionales para su estudio tales como intensidad de muestreo.

- Martel y Cairampoma (2012), La llanura amazónica peruana se caracteriza por la presencia de múltiples formaciones vegetales. Éstas cada vez reciben mayor impacto por actividades antropogénicas tales como la minería y tala. Todo esto, sumado al cambio climático global, genera desconcierto sobre el futuro de los bosques. La identificación de los niveles de almacenamiento de carbono en áreas boscosas, y específicamente en cada formación vegetal, permitiría un mejor manejo de las zonas de conservación, así como identificar las áreas potenciales que servirían para el financiamiento de la absorción de carbono y otros servicios ambientales. El presente estudio fue desarrollado en la estación Biológica del Centro de Investigación y Capacitación Río Los Amigos (CICRA). En el CICRA se identificaron tres formaciones vegetales principales, el bosque de terraza, el bosque inundable y el aguajal. Siendo los bosques de terraza los de mayor extensión y mayor cantidad de carbono acumulado. Como resultado se valorizó la vegetación presente en el CICRA, en alrededor de 11 millones de dólares americanos. El ingreso a la oferta de los bonos de carbono promovería la conservación de los bosques.

1.1.2 Antecedentes a nivel nacional

Zevallos & Araceli (2009), Tesis para optar el grado de Ingeniero Forestal: Determinación del stock de biomasa y carbono en las sucesiones secundarias de Bolaina en la Cuenca media del Río Aguaytía, Ucayali, Perú. El objetivo del estudio, fue determinar el nivel de almacenamiento de biomasa y carbono, tanto en árboles de bolaina blanca, como en las sucesiones secundarias de bolaina blanca (bolainales) y en el propio suelo, en ocho bolainales de 3, 4, 5, 6 y 7 años, en el sector medio de la cuenca del río Aguaytía, en Ucayali. Se evaluó la biomasa aérea seca total (BAST) de 15 árboles de bolaina blanca y de estos se seleccionaron 4 individuos para evaluaciones de biomasa radicular seca total(BRST), en ambos casos los árboles correspondieron a 5 categorías diamétricas; también se evaluó la biomasa aérea seca total del bolainal usando parcelas temporales (100 m2) donde se

midió el DAP, altura total y longitud, tanto en árboles vivos, muertos en pie y muertos caídos; dentro de las parcelas de 100 m2 se establecieron cuadrantes al azar para cuantificar la biomasa arbustiva/herbácea y hojarasca, a partir de esta información se determinó el carbono aéreo total (CAT) almacenado. Las muestras de suelo se obtuvieron de dos profundidades (0-10 y 10-30 cm) para determinar carbono en el suelo (CS). El fuste del árbol de bolaina blanca representa el 72.1 % de la biomasa total del árbol, seguido por las ramas (11.9 %), las raíces (11.7%) y finalmente las hojas (4.3 %). La curva con mejor ajuste para estimar la biomasa aérea seca total en árboles de bolaina blanca fue: Y =0.042394 (dap) 2.650085 (R2= 0.99;p<0.05), y la ecuación generada para estimar la biomasa radicular seca total en árboles de bolaina blanca fue: Y =0.201459 e 0.277154 (DAP) (R2= 0.99; p <0.05). Los bolainales de 3 años almacenaron 61.73 t/ha-1de biomasa aérea seca total, 27.77 t/ha -1 de carbono aéreo y 33.63 t/ha-1 de carbono en el suelo; en contraste con el bolainal de 7 años que almacenaron 90.19 t/ha-1 de biomasa aérea seca total, 40.59 t/ha-1 de carbono aéreo y 30.94 t/ha-1 de carbono en el suelo. Para estimar la biomasa aérea seca total en bolainales de manera confiable (R2= 0.84 yp<0.05) se puede usar la ecuación potencial: Y =37.943456 (edad) 0.472663.

Larrea C. (2007); "Determinación de las reservas de carbono en la biomasa aérea de combinaciones agroforestales de Theobroma cacao 1. & determinación de la ecuación alométrica para el cacao". La presente tesis tuvo como principal objetivo generar información técnica científica base para la elaboración de proyectos de comercialización de créditos de carbono, en el marco del Protocolo de Kyoto, mediante el aprovechamiento de sistemas agroforestales de cacao en la amazonia peruana. Para ello se evaluaron 7 sistemas de uso de la tierra en el ámbito de la provincia de Mariscal Cáceres, región de San Martín. Tres sistemas de 3 años, dos de 6 años y dos de 8 años de edad del cultivo principal es el cacao. Cada uno de los sistemas se encontró provisto de diferentes sombras, distanciamiento y manejo particular. Así mismo se determinó la ecuación alométrica (modelo de biomasa): Biomasa = 0.4849 Diámetro 1.42, con el fin de estimar la biomasa específica para la especie de cacao en función a la información levantada mediante inventarios en Mariscal Cáceres, dicha ecuación fue elaborada en base a 30 árboles de diferentes zonas con similares condiciones ambientales.

De los resultados, se puede concluir que los sistemas de cacao con especies forestales maderables y frutales, presentaron una mayor acumulación de carbono almacenado en la biomasa aérea arbórea, a su vez, estos favorecen de manera constante la presencia de abundante hojarasca, funcionando como principal agente de conservación del suelo y excelente controlador de maleza. Los flujos fijación de carbono para cada uno de los sistemas fluctuaron desde 0.99 a 8.02 ton C / ha / año. El sistema más rentable para esta actividad es el de Cacao de 8 años con sombra de capirona, bolaina y caoba, con un ingreso anual aproximado de US\$ 150.33 dólares americanos, por ton CO2 / ha / año.

Cruzado & Flores (2010), Protocolo para la Determinación del Carbono en el Suelo y en la Biomasa Vegetal Aérea de los Bosques de la Concesión para Conservación Alto Huayabamba: Versión 1.0: La metodología presentada en este documento, se basa en el uso de parcelas rectangulares de 0.5 ha con sub-parcelas anidadas para el inventario del bosque. Este tamaño de parcela permite una caracterización eficiente y detallada de la composición florística, dispersión de las especies y de los parámetros volumétricos y biomasa (CEDISA, 2009). El siguiente paso para la estimación de biomasa es el uso de ecuaciones alométricas apropiadas, ya que existen muchas ecuaciones desarrolladas para diferentes tipos de bosques. En este protocolo, se eligió utilizar las ecuaciones desarrolladas por Chave et al., (2005), específicamente la ecuación para bosques húmedos (Wetforest) ya que ésta, incluye datos de bosques montanos.

Finalmente, es importante agregar que esta versión de protocolo se construyó en el marco de un trabajo de investigación, el cual toma a los bosques de la CCAH como área de estudio (marco muestral). Debido a la limitación de recursos, dicho proyecto se limitó a una evaluación de reconocimiento para poner a prueba la metodología aquí presentada y contar una primera idea de la variabilidad en los stocks de carbono. Esta tarea se encuentra aún en su fase de colección de datos de campo.

1.1.3 Antecedentes a nivel regional

- Mamani J.L. (2012), se realizó un estudio en un bosque con paca de terrazas altas

de la concesión de conservación "Gallocunca", Sector Baltimore, Distrito Tambopata, Madre de Dios, realizándose un inventario de la biomasa aérea y sus componentes en 12 parcelas de muestreo rectangulares, de diseño anidado donde se evaluó la biomasa de árboles grandes (BAG) individuos con DAP≥10 cm en 0.5 ha (50x100 m), la biomasa de árboles pequeños (BAP) individuos con 2.5≤DAP>10 cm en 0.04 ha (20x20 m) y la biomasa herbácea (BH) individuos con DAP<2.5 cm en 0.0016 ha (4x4 m). Se estimó el stock de carbono aéreo o la cantidad de carbono almacenado en la biomasa aérea del bosque con paca de terrazas altas, la cual en promedio fue de 165.63 ±74.59 t C/ha.

- Araujo A. et al. (2011), Necromasa de los bosques de Madre de Dios, Perú; una comparación entre bosques de tierra firme y de bajíos. Los objetivos de este estudio fueron hacer una evaluación y comparación entre la necromasa de los bosques de altura o tierra firme y los bosques inundables o bajíos, estudiar las relaciones entre la necromasa, la biomasa aérea y la densidad de madera del bosque, y proporcionar una primera estimación de la necromasa para todo el departamento de Madre de Dios en tres diferentes lugares utilizando parcelas permanentes y líneas de intersección los valores obtenidos fueron lo bastante alto, siendo diez veces más que la emisión anual de combustibles fósiles de Perú entre 2000 2008. Esta substancial porción de la necromasa enfatiza la importancia de estos tipos de estudios de campo, considerando que este componente de carbono en el bosque tropical no se logra detectar con otros métodos como la detección remota por satélites.
- AIDER (2011), estimó el contenido de carbono almacenado en la vegetación viva (biomasa aérea y subterránea) de los bosques pertenecientes a las ANPs de la Reserva Nacional Tambopata y Parque Nacional Bahuaja Sonene en el ámbito de Madre de Dios, Perú en una superficie de 846 988.95 has. El muestreo fue estratificado, determinándose 109 parcelas, donde se evaluó la biomasa aérea en parcelas circulares anidadas, con radios de 30 m (individuos de árboles y palmeras con DAP≥50 cm), radios de 16 m (individuos de árboles con 20≤DAP<50 cm) y radios de 5 m (individuos con 5≤DAP<20 cm) fueron medidos. Para estimar la biomasa se utilizó ecuaciones alométricas, consecuentemente se estimó el contenido de carbono almacenado en la biomasa aérea y subterránea

respectivamente para el estrato aguajal mixto en 58.33 t C/ha, 16.87 t C/ha; Aluvial inundable 87.31 t C/ha, 24.71 t C/ha; Colina alta fuerte 117.14 t C/ha, 30.59 t C/ha; Colina alta suave 102.38 t C/ha, 27.06 t C/ha; Colina baja fuerte 133.97 t C/ha, 36.11 t C/ha; Colina baja suave 176.27 t C/ha, 42.89 t C/ha; Terraza alta 102.75 t C/ha, 26.77 t C/ha; Terraza baja 115.01 t C/ha, 30.10 t C/ha; Terraza disectada fuerte 115.07 t C/ha, 30.60 t C/ha y Terraza disectada suave 91.15 t C/ha, 24.47 t C/ha respectivamente. El área efectiva de 548 588.91 has, se estima que almacenaría un total de 68 721 854.89 toneladas de carbono y/o 251 980 134.60 toneladas de CO2-equi para todo el área del proyecto. El área de estudio se encuentra en el tipo de Bosque de Terraza disectada suave, donde se reportó 182.3 t/ha en la biomasa aérea y 48.94 t/ha en la biomasa subterránea.

- Asner et al. (2010), estimaron el stock de carbono encima del suelo (AGC) o aéreo mediante la aplicación de tecnologías LiDAR basado en tipo de bosque e información de satélite, con el que desarrolló un mapa de stock de carbono aéreo de 0.1 hectáreas de resolución en un área de 4.3 millones de hectáreas de la Selva Amazónica del departamento de Madre de Dios, Perú como un procedimiento de la cartografía a escala nacional de REDD. Para ello se utilizaron información de parcelas de campo del proyecto RAINFOR (individuos con DAP≥10 cm), donde se convirtió las mediciones del LiDAR de la estructura del bosque a densidad de carbono aéreo. El stock de carbono aéreo total de la región de carbono estimado fue de 395 Tg (millones de toneladas métricas), y las tres principales fuentes de variación de carbono en los bosques estuvieron mediadas por el sustrato geológico, estas son: Sustratos terciarios ubicados hacia el norte con densidades de carbono 85 - 100 t C/ha, superficies planas aluviales del Holoceno ubicados hacia el centro-este con densidades de carbono 110 - 125 t C/ha y superficies del Cretácico ubicados hacia el suroeste con densidades de carbono de 65 - 80 t C/ha (prueba t de comparación al azar subconjuntos, P <0,001).
- Cheirasco R. et al. (2009), estimaron la cantidad de carbono almacenado en los Bosques de las Concesiones Forestales Maderacre y Maderyja en Madre de Dios, Perú. En la planeación del inventario exploratorio del bosque se utilizaron imágenes Landsat TM y mapas. El diseño de muestreo fue sistemático estratificado con un error de muestreo del 10%, donde ambas áreas se dividierón en grillas

2x2.5 km (las parcelas de muestreo se ubicaron en el centro). En 142 parcelas de 10x500 m (0.5 ha), estas se dividieron en subparcelas de 10x25 m obteniéndose de ello 20 unidades, de los cuales en la parte central de la parcela de 0.5 ha (entre los 200-300 m), en 4 unidades de subparcelas se evaluaron individuos (árboles y palmas) con DAP≥10 cm y en las subparcelas restantes se evaluaron individuos con DAP≥30 cm. Para estimar la biomasa aérea y subterránea de los árboles y palmeras se utilizaron ecuaciones alométricas (a partir de variables de dasometría como el DAP, HT entre otros). La estimación de la cantidad de carbono almacenado en la biomasa (aérea y subterránea) de los bosques de las concesiones forestales, son detallados a continuación: En la vegetación de Maderacre se encontró que el Bosque con paca almacena en promedio 238.83 t C/ha, Bosque de vigor (2) 248.13 t C/ha, Bosque de vigor (3) 291.50 t C/ha y Pacal 244.68 t C/ha. Por lo que en Maderacre hay un promedio de 234.15 t C/ha almacenados, con una superficie de 49 376 ha, lo que resulta en un total de 11 561 390.40 de toneladas de carbono y/o de 42 392 150.18 toneladas de CO2 equivalente en toda la concesión. Con respecto en la vegetación de Maderyja se encontró que el Bosque con paca almacena en promedio 186.21 t C/ha, Bosque de vigor (2) 236.01 t C/ha, Bosque de vigor (3) 221.61 t C/ha y Pacal 210.58 t C/ha. Lo que resulta que en Maderyja hay un promedio de 223.21 t C/ha almacenados, con una superficie de 49 556 ha, lo que resulta en un total de 11 061 394.76 de toneladas de carbono y/o de 40 558 816.17 toneladas de CO2 equivalente en toda la concesión.

Vallenas & Parillo (2007), estimaron la biomasa aérea y la cantidad de carbono en las especies de shihuahuaco (Dipteryx micrantha), quinilla (Manilkara bidentata), estoraque (Myroxylon balsamun) en la vegetación en Bosques de Terrazas Altas Aluviales en los predios agrícolas con una extensión de 40672.095 has en el distrito de Tahuamanu, Madre de Dios, Perú. Se realizó un inventario en 10 parcelas de 30 ha, las tres especies con DAP≥30 cm y la altura total (HT). Se utilizó técnicas destructivas para estimar la biomasa de tres especies, se registró el diámetro, longitud (fuste, ramas) y peso húmedo (ramas delgadas, hojas, raíces). Así mismo se obtuvieron muestras de raíz, fuste, rama y hojas las cuales se llevaron al laboratorio para determinar el volumen, la gravedad específica, fracción de carbono y biomasa. Se generó ecuaciones alométricas para estimar la biomasa total en base a las variables de DAP y HT. Es así que se estimó el carbono

almacenado promedio por hectárea de shihuahuaco, en 3.841 t C/ha, lo que implica que para el área efectiva el stock de carbono almacenado asciende a 96 288.72 t C; para quinilla en 1.586 t C/ha, lo que implica que para el área efectiva el stock de carbono almacenado asciende a 39 760.85 t C y para la especie estoraque en 0.634 t C/ha, lo que implica que para el área efectiva el stock de carbono almacenado asciende a 15 890.53 t C, siendo el carbono almacenado estimado para las tres especies 151 940.09 t C.

- WINROCK (2006), determinó el almacenamiento de carbono en los bosques de la Concesión de Conservación Los Amigos, Madre de Dios, Perú. La concesión de conservación Los Amigos tiene un área de 145 735 has, dominados por Bosque de Colinas (BC), Bosque de Terrazas Inundables (BTI), Bosque de Terrazas Aluviales (BTA) y Bambú (B), con altitudes que varían de 200 a 350 msnm. El estudio incluyó dos elementos principales: la evaluación basada en imágenes aéreas de biomasa leñosa sobre el suelo y un inventario de campo de biomasa forestal. Las fotos aéreas fueron tomadas en agosto y septiembre de 2005 para el análisis aéreo de parcelas. Los datos se recogieron de 39 parcelas establecidas en los principales tipos de vegetación en mayo 2005 (n= 17) y en septiembre de 2005 (n= 22). Se evaluó la biomasa aérea en parcelas circulares anidadas, con radios de 20 m (individuos de árboles y palmeras con DAP≥20 cm), radios de 4 m (individuos de árboles con 5≥DAP≤20 cm) y radios de 1 m (individuos con DAP≤5 cm, hasta 1.3 m de altura) fueron medidos. El contenido de carbono en promedio ponderado en los tipos de vegetación fue de 172 t C/ha. La densidad de carbono en la biomasa aérea fue más alto en los tipos BC, BTI, B (185, 188, 123 t C/ha). Aunque la densidad de carbono en los BTA es uno de los más bajos (168 t C/ha), este cubre el 48% de la concesión y contiene la más grande reserva de carbono, con 12 879 282 t C. Los bosques de la concesión contienen en total 21 665 000 t C en la biomasa leñosa. La existencias de carbono equivalente en total en la biomasa aérea contiene unos 79.4 millones de t CO2. La integración de métodos aéreos y terrestres en este estudio resultó ventajoso porque permite el muestreo a gran escala con clasificación semi- automática y el cálculo de carbono en la biomasa.
- Chambi P. (2007), Valoración Económica de Secuestro de Carbono mediante simulación aplicado a la Zona Boscosa del Rio Inambari y Madre de Dios, MGR.

Uno de los problemas más graves que pueden derivarse de la no retención del carbono es el recalentamiento del planeta debido a los efectos de la alta contaminación de CO2 que va elevando paulatinamente la temperatura terrestre. Ciertos estudios han demostrado que ese recalentamiento se da a razón de un grado por cada determinada concentración de CO2. Las emisiones de CO2 se relaciona con el consumo de combustibles fósiles. La tarea de lograr un equilibrio sostenible está en los campos políticos y científicos. Es importante desarrollar el análisis del impacto o evaluación de los daños causados por un impacto ambiental externo específico. Pero, aún es mucho más importante la evaluación de las contribuciones económica totales o beneficios netos reportados a la sociedad por el sistema en estudio.

Lapeyre, Alegre y Arévalo (2004), Se determinó la biomasa aérea en diferentes sistemas de uso de la tierra en la región de San Martín-Perú, con la finalidad de conocer el potencial de captura de carbono. Los sistemas de uso de la tierra evaluados fueron: Bosque primario, Bosque secundario de diferentes edades, sistemas agrícolas locales maíz (Zea maiz), arroz (Oriza Sativa), pastos (Brachiaria) y sistemasagroforestales con café (Coffea arabica) bajo sombra y cacao (Cacao sp.). También se comparó este potencial con otros sistemas de uso de la tierra de otras regiones del Perú y se monitoreó la pérdida de reservas de carbono después del corte de la foresta y su reemplazo por cultivos. En cada uno de éstos sistemas se establecieron al azar cinco transectos donde se evaluó la biomasa arbórea. Dentro de éstos transectos se establecieron cuadrados también al azar para cuantificar la biomasa herbácea y la biomasa de hojarasca. El carbono total en el bosque primario fue de 485 tm C ha-1, superando ampliamente las reservas del bosque secundario de 50 años y de bosque descremado de 20 años. Con relación al bosque primario se observa una reducción de reservas en más de 50% del bosque secundario de 50 años (234 tm C ha-1). El bosque descremado de 20 años perdió más del 80% de reservas (62 tm C ha-1). El nivel de reservas de carbono en la biomasa de hojarasca de los sistemas boscosos, no es significativo al compararlo con el total de las reservas de carbono de la biomasa aérea; sin embargo si es significativo para sistemas agroforestales. Los sistemas agroforestales secuestraron entre 19 a 47 tm C ha-1, dependiendo de la cantidad de especies forestales, tipo de cultivo, edad y tipo de suelo y recuperan el potencial de captura en forma productiva. Los sistemas

agrícolas capturaron poco C (5 tm C ha-1), además generan fugas de gases efecto invernadero (GEI) cuando se usan agroquímicos y quema de rastrojos, entre otros.

1.2. Revisión de Literatura

1.2.1 Protocolo de Kioto y el Mecanismo de Desarrollo Limpio

El Protocolo de Kioto es un tratado internacional en vigor desde 2005 que busca la reducción de la emisión de los Gases que provocan el Efecto de Invernadero (GEI, ver sección I). El Protocolo determina que países desarrollados (considerados Partes constituyentes del Anexo I) deben reducir por lo menos 5,2% de sus emisiones de GEI en relación a los niveles de 1990, en el periodo entre 2008 y 2012 (primer periodo de compromisos). Cada país signatario del Anexo I define sus metas individuales de reducción. Países en desarrollo como Brasil o Perú no pertenecen al Anexo I y, por lo tanto, no tienen la obligación de reducir sus emisiones de GEI. (citado por Rügnitz et al,2009).

Tres mecanismos de flexibilización auxilian a los países del Anexo I a cumplir sus metas de reducción previstas en el Protocolo: Implementación Conjunta (IC), Comercio de Emisiones (CE) y Mecanismo de Desarrollo Limpio (MDL). (citado por Rügnitz et al,2009)

De estos tres mecanismos1, solamente el MDL tiene aplicación en países en desarrollo. Tal mecanismo permite que países parte del Anexo I puedan financiar o desarrollar proyectos de reducción de GEI (eficiencia energética o secuestro de carbono) fuera de su territorio. Las reducciones de emisiones resultantes de la actividad del proyecto son contabilizadas en la forma de Certificados de Reducción de Emisiones (CREs)2 y negociadas en mercados internacionales. Para esto, las reducciones de emisiones deben ser adicionales a las que ocurrirían en la ausencia de la actividad certificada del proyecto, y traer beneficios reales, medibles y de largo plazo, relacionados con la mitigación del cambio del clima. Además de reducir las emisiones de GEI, el MDL pretende promover la sostenibilidad en general, principalmente en los países en desarrollo. (Citado por Rügnitz et al, 2009).

1.2.2 Disminución de recursos y aumento de necesidades

Se calcula que en 2010 el área total de bosque del mundo suma algo más de 4 000 millones de hectáreas, lo que equivale a un promedio de 0,6 hectáreas de bosque per cápita. Sin embargo, el área de bosque no está distribuida de manera homogénea. Los cinco países con mayor riqueza forestal (la Federación de Rusia, Brasil, Canadá, Estados Unidos de América y China) suman más de la mitad del área total de bosque (con un 53 por ciento), mientras que 64 países, con una población total de 2 000 millones, tienen menos de un diez por ciento de su superficie cubierta por bosques.

Estos últimos incluyen algunos países de las zonas áridas de considerable extensión, así como muchos pequeños estados insulares en desarrollo (PEID) y territorios dependientes, diez de los cuales carecen en absoluto de bosques. (FAO, 2010). El área total de otras tierras boscosas se calcula en por lo menos 1 100 millones de hectáreas, equivalente al 9 por ciento del tamaño del área total. El área total de otras tierras con algún tipo de cubierta arbórea se cifró en 79 millones de hectáreas, pero sin duda es mucho mayor dado que los datos de que se dispone son limitados. Las estimaciones realizadas para Evaluación de Recursos Forestales mundiales - FRA 2010 apuntan a que los bosques del mundo almacenan 289 gigatoneladas de carbono solo en su biomasa. Si bien la ordenación sostenible, la plantación y la rehabilitación de los bosques pueden permitir conservar o aumentar las existencias de carbono forestales, la deforestación, la degradación y la escasa ordenación forestal las reducen. (FAO, 2010).

En todo el mundo, las existencias de carbono en la biomasa forestal se redujeron en una cantidad estimada de 0,5 gigatoneladas de carbono por año durante el período 2005-2010, principalmente debido a una reducción en el área mundial de bosque (Figura N°02). Los bosques primarios representan el 36 por ciento del área de bosque, pero han disminuido en más de 40 millones de hectáreas desde el año 2000 Basado en un promedio mundial, más de un tercio de todos los bosques son bosques primarios, es decir, bosques de especies nativas en los que no existen indicaciones claramente visibles de actividades humanas y los procesos ecológicos no han sido alterados de forma significativa (Figura N°03). Los bosques primarios, en especial los bosques tropicales húmedos, comprenden la mayor riqueza de especies y diversidad de ecosistemas terrestres. La reducción del área de bosques primarios en un 0,4 por ciento anual en una

década se debe en gran parte a la reclasificación del bosque primario a "otros bosques regenerados naturalmente" por la tala selectiva y otras intervenciones humanas. (FAO, 2010).

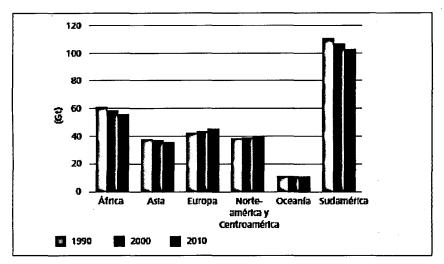


Figura N° 02: Tendencias en las existencias de carbono en la biomasa forestal, 1990-2010. Fuente: FAO (2010).

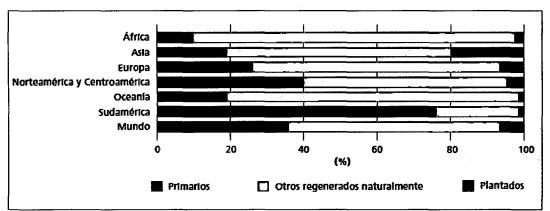


Figura N° 03: Características de los bosques del mundo, 2010.

Fuente: FAO (2010).

El área total de los bosques del mundo es de aproximadamente 3,4 billones de ha; y un tercio de la superficie terrestre está cubierta con vegetación maderera. (CATIE, 2000). Una porción considerable del total del área forestal es llamada área maderera abierta, incluyendo las sabanas. La mitad (52 por ciento) de los bosques abiertos y cerrados se encuentra en los trópicos, seguidos de las latitudes altas (30 por ciento) y medias (18 por ciento). (CATIE, 2000).

El área mundial de bosques está disminuyendo aproximadamente entre 12 y 15 millones de hectáreas anuales. La mayoría de esta disminución (10 a 12 millones de ha.) ocurre en el trópico. De hecho, el área de bosques en las regiones templadas y boreales ha aumentado levemente durante las últimas décadas. Las causas principales de la

deforestación en los trópicos son el cambio de tierras agrícolas hacia tierras de pastoreo, y la tala de madera para leña y para construcción. (CATIE, 2000).

La investigación en cambio climático y uso de la tierra en los trópicos, se ha enfocado mayormente en el análisis de los impactos de la deforestación y los efectos del uso de la tierra en las emisiones de gases de efecto invernadero y de Carbono. Sin embargo, se han hecho algunos estudios para tratar de cuantificar el potencial del uso sostenible de la tierra para secuestrar y acumular carbono en los ecosistemas tropicales. (CATIE, 2000).

El sector forestal tiene el potencial para ser una fuente abundante de riquezas para nuestro país, debido a sus ventajas comparativas. Según el Proyecto de Apoyo a la Estrategia Nacional para el Desarrollo Forestal (ENDF), los bosques naturales peruanos abarcan 78,8 millones de hectáreas: 74,2 en la selva, 3,6 en la costa y 1,0 en la sierra. Estas cifras ubican al Perú como el noveno país con mayor superficie forestal del planeta y el segundo en Sudamérica, después de Brasil. Los bosques de la selva peruana son sumamente heterogéneos; esto es, contienen una impresionante población arbórea dotada de la mayor diversidad de especies existente en el planeta, como lo demuestran los bosques Yanamono y Mishana (Loreto), con 300 y 289 especies de árboles por hectáreas, respectivamente. (Galarsa y La Sema, 2005).

1.2.3 Servicios Ambientales

A fines de los anos 90, un grupo de ecologistas y economistas trabajaron en colaboración para asignarle un valor a los servicios de la naturaleza. Ellos calcularon que los servicios prestados por la naturaleza tienen un valor aproximado de USD 33 quintillones por ano (Costanza, R, D'Arge, R, De Groot, R, y colaboradores). Dado que esta cifra representaba caso el doble del producto bruto nacional global de ese entonces (USD 18 quintillones en 1997), dicho hallazgo suscitó una señal de alerta global y una buena dosis de controversia. El término "servicios ambientales" comenzó a utilizarse corrientemente en el dialogo subsiguiente y al formalizar el término en una publicación de 1997, la Sociedad Ecológica de América (Ecological Society of America) explicó que el termino servicios ambientales "se refiere a una amplia gama de condiciones y procesos a través de los cuales los ecosistemas naturales y las especies que los componen ayudan a mantener y llevar a cabo la vida humana." (Daily y colaboradores).

En definitiva, representan el beneficio que la gente obtiene de ecosistemas. (Herbert T. 2010).

El concepto de "Servicios Ambientales" y su valorización está directamente ligado a las disciplinas de la economía y la ecología, exponían diferencias entre bienes ambientales, servicios ambientales y funciones ambientales, definiendo los servicios ambientales como las posibilidades o el potencial que puede ser utilizado por los humanos para su propio bienestar, diferenciándolos de un bien ambiental que se definía como un producto de la naturaleza directamente aprovechado por el ser humano, por ejemplo: la madera y productos no maderables para diversos usos. (Hueting, 1998).

Actualmente, el tema de servicios ambientales viene siendo incorporado en la legislación ambiental de diferentes países, definiéndose los conceptos, alcances y lineamientos para su implementación. La Ley Forestal y de Fauna Silvestre Peruana define como servicios ambientales aquellos que brindan el bosque y las plantaciones forestales, y que inciden directamente en la protección y mejoramiento del medio ambiente. (Salazar J. 2004). Se determinan cuatro importantes servicios como son: Mitigación de emisiones de gases de efecto invernadero, protección del agua, protección de la biodiversidad y los ecosistemas, formas de vida y belleza escénica cultural para fines turísticos y (Salazar J. 2004).

En este contexto, cabe resaltar que los servicios ambientales generan beneficios diferentes en calidad y cantidad dependiendo de su dimensión físico-geográfica y espacial. Así podemos decir que existen servicios ambientales que brindan beneficios de tipo: global, como la regulación de la composición química de la atmósfera, los océanos y la regulación del clima nacional, como recreación y turismo, generación de energía; local o regional, como la protección del recurso hídrico, captación y calidad de agua y control biológico, entre otros. (Salazar J. 2004).

Los ecosistemas nos proveen de un amplio rango de servicios, desde agua limpia hasta la captura de carbono y el mantenimiento de diversidad biológica. Tanto la gente como las empresas dependen de estos servicios para obtener materias primas, para los procesos de producción y para la estabilidad climática. Sin embargo, actualmente, muchos de estos servicios ambientales están subvaluados, o no tienen valor financiero

alguno. Pagos y mercados para servicios ambientales están emergiendo en distintos países alrededor del mundo. Por ejemplo, mercados multimillonarios, ya existen para carbono, humedales, contaminación del agua, e incluso para especies amenazadas. (Salazar J. 2004).

El PyCSA (Pago y Compensación por Servicios Ambientales), son herramientas que están siendo muy utilizadas por practicantes de la conservación, inversionistas, grupos comunales, gobiernos y otros, para reconocer el valor de los servicios proveídos por la naturaleza y el rol de aquellos que mantienen estos servicios. Mientras que los PyCSA pueden tener varios beneficios, es importante reconocer que no siempre es el mecanismo de conservación más apropiado y no debe ser emprendido sin un análisis y entendimiento cuidadoso de la situación particular. (Salazar J. 2004).

Los bosques se constituyen como un importante reservorio de carbono. (Houghton, 1993). En la actualidad, los bosques del mundo contienen alrededor del 75% del carbono natural contenido en los ecosistemas terrestres y su destrucción representa aproximadamente el 25 % de las emisiones actuales de CO2 atmosférico provocadas por el hombre. Por el contrario, la reforestación podría eliminar cantidades significativas de CO2 de la atmósfera en unas décadas. (Salazar J. 2004).

1.2.4 Pago por Servicios Ambientales

El Banco Mundial define el Pago por Servicios Ambientales (PSA), como un mecanismo de compensación flexible, directo y promisorio, donde los proveedores de esos servicios reciben un pago por parte de los usuarios de tales servicios. En este sentido, el PSA no es una subvención o subsidio a la producción forestal, es el pago por un servicio que se recibe, y por lo cual alguien está dispuesto a pagar (consumidores de combustible, empresas que utilizan el agua, compensación de emisiones de carbono, disfrute de la belleza escénica, protección de biodiversidad, etc.). (Salazar J. 2004).

Según la Estrategia Institucional para el Pago por Servicios Ambientales del INRENA, los PSA son una transacción voluntaria donde al menos existe: (i) un servicio ambiental bien definido (o determinado uso de los recursos que asegure dicho servicio ambiental), (ii) el cual es comprado por como mínimo un comprador, y (iii) uno o más proveedores, bajo la condición de que el mismo siga proveyendo el servicio ambiental por el cual se le paga condicionalidad.(Salazar J. 2004). El concepto de PSA no se puede considerar

relativamente nuevo, lo que es una novedad es que algunos países del mundo han empezado a considerarlo dentro de su legislación como una de las formas de conservar los recursos forestales y asociados a éste. (Salazar J. 2004).

La idea fundamental de los sistemas de PSA es crear un mercado para un bien ambiental que habitualmente no tiene un valor comercial. El sistema parte de la identificación de agentes económicos responsables de la externalidad ambiental "positiva", o "proveedores" del servicio, y de los agentes beneficiados (o usuarios). (Salazar J. 2004).

En la actualidad debido a la connotación que tiene la palabra "pago", los especialistas en la materia están utilizando más bien el término de Compensación por Servicios Ecosistémicos (CSE), que se considera un concepto más integrador y con mejor aceptación por parte de los actores sociales. Sin embargo, lo importante es reconocer en este mecanismo, una herramienta para lograr el reconocimiento de los servicios ambientales que generalmente pasan inadvertidos por el sistema económico, pero que sin embargo, son fuente y sustento de actividades económicas fundamentales a nivel local, regional y nacional. (Salazar J. 2004).

1.2.5 Valoración Económica

La valoración es la asignación de valores monetarios a bienes y servicios ambientales o a los impactos de los cambios de calidad ambiental. En los países en desarrollo, la gente que trabaja depende directamente de los recursos naturales para su alimentación, vivienda y empleo. Su bienestar, tanto a corto como a largo plazo, está indisolublemente ligado con la productividad de los sistemas naturales. En consecuencia, los efectos socioeconómicos de los ambientes degradados a menudo golpean más fuerte a los pobres. (Dixon *et al.*, 1994).

Existen dos elementos principales para la evaluación de los impactos ambientales, siendo éstos: Identificar los impactos ambientales y en segundo término dar valor monetario a estos impactos, de modo que puedan ser incluidos en los análisis formales de proyectos. (Dixon *et al.*, 1994).

Para la valoración del servicio sumidero de carbono se utilizan varios precios de referencia, donde Costa Rica en negociaciones con Noruega acordaron el precio de U. S \$ 10 por tonelada de carbono almacenado durante un período de 20 años (es la capacidad del bosque para mantener una determinada cantidad promedio de carbono por ha, que nunca será liberado a la atmósfera. El pago se basará en el costo marginal social de mitigar emisiones), (Dixon *et al.*, 1994).

El parqueo de carbono tendrá un precio de US\$ 20 por tonelada que corresponde al promedio de los mejores estimados existentes del costo marginal social de la emisión de una tonelada de carbono a la atmósfera. Finalmente el secuestro de carbono se refiere a la acción de remover por un periodo temporal de CO2 que se encuentra en la atmósfera y, por tanto, requiere de un incremento neto en la biomasa del bosque o plantación forestal. El pago en este caso debe realizarse por la acumulación neta, o sea el incremento en la cantidad de carbono almacenada sobre una base anual y hasta el punto en que el bosque deje de secuestrar carbono. (Dixon et al., 1994).

El valor de uso de los recursos naturales, considerando la variedad de usos, se subdividen en valor de uso directo, valor de uso indirecto y valor de opción. El valor de uso directo esta dado en la relación directa que tiene implícita con los recursos naturales, cualquier cambio que ocurra con respecto a la calidad o cantidad del recurso podría afectar directamente el bienestar de los individuos. (Dixon *et al.*, 1994).

El valor de uso directo se refiere al uso de un recurso en un lugar específico. Este uso puede ser consuntivo o no consuntivo. En el primer caso, el recurso es consumido por la actividad que se desarrolla en él, como por ejemplo la extracción de leña y frutos, la extracción de madera comercial, la caza y la pesca; mientras en el segundo caso el recurso se usa en forma no consuntiva, tal es el caso de la recreación, el esparcimiento relacionado con la observación del paisaje. (Dixon *et al.*, 1994).

1.2.6 Reservas de Carbono

La foresta de los trópicos húmedos, contiene las concentraciones mas grandes de biomasa y biodiversidad en la tierra y su destrucción tiene consecuencias medio ambientales directas en todo el mundo, ésta foresta es actualmente la mas extensa en la cuenca Amazónica de Sudamérica. Cuando éstos bosques son destruidos con las quemas

y convertidos para otros usos, gran parte del carbón que está almacenado en la vegetación es perdido hacia la atmósfera principalmente como C02. (Alegre, 2002).

Desde 1990 al año 2000 la superficie deforestada en el mundo ha sido de 132 millones de hectáreas, sin embargo el área total recuperada mediante actividades de reforestación ha sido de 33 millones de hectáreas, quedando aún una superficie de 99 millones de hectáreas (FAO, 2001). Es éste el mayor proceso de pérdida de fuentes de fijación de carbono y una de las mayores causas de la acumulación de CO2 en la atmósfera, al igual que los causados por la combustión de los carburantes fósiles. (Alegre, 2002).

La foresta tropical es un importante recurso para la población creciente de los trópicos húmedos bajos. En contraste, la región montañosa de la sierra peruana no presenta bosques naturales y lo poco que queda de vegetación nativa arbórea está en muchos casos en proceso de extinción, sin embargo existen plantaciones forestales y sistemas de cultivos intensivos durante los períodos de lluvias en la zonas altas o irrigadas en los valles interandinos muy fértiles. Según estudios recientes en éste ecosistema de montañas el carbono no está acumulado en la biomasa, sino en el suelo que sería lo contrario a lo que ocurre en la región tropical húmeda. (Alegre, 2002).

La cosecha de madera nativa genera empleo y beneficios económicos para la gente pobre, así como a las grandes empresas, la conversión de la foresta a pastos y agricultura provee de alimentos y oportunidades de inversión, mientras que los minerales valiosos y carburantes fósiles degradan la foresta. La preocupación global sobre el medio ambiente y sobre la destrucción de la foresta, debe ser balanceada con las necesidades económicas y las aspiraciones de los países en el desarrollo hacia un nivel estándar mas alto de vida. (UICN, 2002)

1.2.7 Estimación de biomasa y carbono

Según la FAO (2010) un total 180 países, que representan el 94% de los bosques del mundo, informaron sobre la biomasa forestal y el carbono en la biomasa para 2010. Respecto a la madera muerta aportaron datos 73 países, lo que equivale al 60% del total de bosques. Sobre el carbono en la madera muerta lo hicieron 72 países (61%), sobre el carbono en hojarasca 124 países (78%) y sobre el carbono en el suelo 121 países (78%). Para los países y áreas restantes, la FAO estimó la biomasa, la madera muerta y las

existencias de carbono utilizando los promedios subregionales por hectárea y multiplicándolos por el área de bosque en el año correspondiente.

El Cuadro 1 indica que en 2010 la biomasa total (tanto sobre como debajo del suelo) de los bosques del mundo ascendía a 600 gigatoneladas (Gt), lo que equivale a unas 149 t/ha. Los valores máximos de existencias de biomasa por hectárea corresponden a las regiones con bosques tropicales, como Sudamérica y África occidental y central, donde las existencias de biomasa superan las 200 t/ha. Se estima que la madera muerta de los bosques del mundo alcanza unas 67 Gt de materia seca, o 16.6 tC/ha. El descenso en las existencias totales de biomasa se debe principalmente a la pérdida de área de bosque.

Región / subregión	Bio	masa	Madera muert		
	miliones de toneladas	t/ha	millones de toneladas	t/ha	
África oriental y meridional	33 385	124,8	6 888	25,7	
África del norte	3 711	47,1	1 069	13,6	
África occidental y central	81 603	248,7	7 747	23,6	
Total de África	118 700	176,0	15 704	23,3	
Asia oriental	18 429	72,4	2 514	9,9	
Asia meridional y sudoriental	51 933	176,4	5 964	20,3	
Asia occidental y central	3 502	80,5	70	1,6	
Total de Asia	73 864	124,7	8 548	14,4	
Europa (sin la Federación de Rusia)	25 602	130,7	1 434	7,3	
Total de Europa	90 602	90,2	15 790	15,7	
Caribe	1 092	157,5	120	17,2	
Centroamérica	3 715	190,5	419	21,5	
Norteamérica	76 929	113,3	8 633	12,7	
Total de Norteamérica y Centroamérica	81 736	115,9	9 172	13,0	
Total de Oceanía	21 302	111,3	3 932	20,5	
Total de Sudamérica	213 863	247,A	13 834	16,0	
Mundo	600,036	138	66930	16.6	

Cuadro Nº 01: Biomasa y madera muerta, por región y subregión, 2010.

Fuente: FAO, 2010.

El Cuadro 2 presenta las existencias estimadas de carbono en los bosques por región, subregión y al nivel mundial. En 2010, las existencias totales de carbono en la biomasa de los bosques del mundo se estiman en 289 Gt, la madera muerta y la hojarasca almacenan un total de 72 000 millones de toneladas de carbono (M t C), o 17.8 tC/ha, lo que es un volumen ligeramente superior al registrado en FRA (2005). Se estima que los suelos forestales contienen unas existencias totales de carbono de 292 000 M t C, o 72.3 t/ha, lo que representa un volumen algo superior al total de existencias de carbono en la biomasa forestal. Si se suman los totales de carbono en la biomasa, la madera muerta, la

hojarasca y los suelos, el total estimado de existencias de carbono en los bosques en 2010 es de 652 000 M t C, que equivale a 161.8 tC/ha. (FA0, 2010).

Los bosques tropicales son el escenario de un número significativo de esfuerzos internacionales de investigación, demostrando que los valores más elevados en contenido de carbono y biomasa aérea están en bosques amazónicos (Overman et al. 1994; Ordóñes, 1999; Dauber et al. 2000; Arreaga, 2002; Baker et al. (2004 a,b); Chave et al. (2001; 2005; 2006 a,b); Mostacedo et al. 2006; Phillips et al. (1998; 2002a; 2004; 2009); Malhi et al. 2009 citado por Ureta, 2009).

Región / subregión	Carbor biom		Carbono ei muerta y h				Total de existencias de carbono	
	millones de toneladas	t/ha	millones de toneladas	tha	millones de toneladas	t/ha	millones de toneladas	t/ha
África oriental y meridional	15 762	58,9	3 894	14,6	12 298	46,0	31 955	119,4
África del norte	1 747	22,2	694	8,8	2 757	35,0	5 198	66,0
África occidental y central	38 349	116,9	3 334	10,2	19 406	59,1	61 089	186,2
Total de África	55 859	82,8	7 922	11,7	34 461	51,1	98 242	145,7
Asia oriental	8 754	34,4	1 836	7,2	17 270	67,8	27 860	109,4
Asia meridional y sudoriental	25 204	85,6	1 051	3,6	16 466	55,9	42 722	145,1
Asia occidental y central	1 731	39,8	546	12,6	1 594	36,6	3 871	89,0
Total de Asia	35 689	60,2	3 434	5,8	35 330	59,6	74 453	125,7
Europa (sin la Federación de Rusia)	12 510	63,9	3 648	18,6	18 924	96,6	35 083	179,1
Total de Europa	45 010	44,8	20 648	20,5	96 924	96 <i>A</i>	162 583	161,8
Caribe	516	74,4	103	14,8	416	60,0	1 035	149,2
Centroamérica	1 763	90,4	714	36,6	1 139	58,4	3 616	185,4
Norteamérica	37 315	55,0	26 139	38,5	39 643	58,4	103 097	151,8
Total de Norteamérica y Centroamérica	39 594	56,1	26 956	38,2	41 198	58,4	107 747	152,7
Total de Oceania	10 480	54,8	2 937	15,3	8 275	43,2	21 692	113,3
Total de Sudamérica	102 190	118,2	9 990	11,6	75 473	87,3	187 654	217,1
Mundo	288 821	71,6	71 888	17,8	291 662	72,3	652 371	161,8

Cuadro Nº 02: Existencias de carbono en los bosques, por región y subregión, 2010.

Fuente: FAO, 2010.

Los ecosistemas de bosques tropicales juegan un rol importante en el ciclo del carbono global debido a la gran cantidad de stock total de carbono que almacenan (aprox. 424 Pg C incluyendo los suelos, o 37% del carbono almacenado en los ecosistemas boscosos; Dixon et al. 1994; citado por Quinto, 2010) y a los grandes flujos de carbono que estos bosques procesan cada año (fijan aprox. 46 Pg C año, o 33% de la productividad primaria neta terrestre global; del Grosso et al. 2008). La Amazonía, con sus 6 millones de km², es el bosque tropical más grande del mundo, y alberga aprox. 86 Pg C, excluyendo el carbono en el suelo (Saatchi et al. 2007), la mayoría de este carbono está almacenado en la biomasa viva; la necromasa contribuye aprox. 9.6 Pg C (Chao et al. 2009), el carbono en el suelo es un componente importante del

stock de carbono total y puede contribuir aprox. 50-70 % del carbono almacenado en los otros componentes del bosque (Malhi *et al.* 2009 citado por Honorio *et al.* 2010).

Chave et al. (2005), Encontraron valores para biomasa distribuidos a lo largo de los bosques tropicales de Asia, Oceanía, África, Centroamérica y Sudamérica, teniendo en cuenta la altitud de los sitios evaluados en América encontró que El Verde en Puerto Rico (510 msnm) presentó 3.506 tC/ha en 30 árboles, Costa Rica tuvo 177.466 t/ha en 96 árboles (42 msnm), en Guyana Francesa (50 msnm) 138.048 t/ha almacenadas en 362 árboles, Chave et al. 2008b reportó biomasa de 356 - 398 t /ha, Tapajós este de Brasil, Keller et al. (2001) reportaron biomasa de 372 t/ha, Manaus centro de Brasil (100 msnm) con 315 árboles registró 147.928 t/ha, Nascimento Laurance (2002) reportaron biomasa de 304 - 432 t /ha, Amazonas, Acre, Mato Grosso y Pará sur oeste de Brasil, Nogueira et al. (2008), reportaron biomasa de 118 - 240 t /ha, en Colombia 136.122 t /ha en 52 árboles y en 41 árboles de Venezuela se acumuló 27.379 t/ha de biomasa a 120 msnm en la zona de San Carlos; lo que demuestra que mientras más baja sea la altitud en que se ubique un bosque, mayor será la acumulación de biomasa aérea según este modelo, los rangos extremos para bosques húmedos tropicales pueden oscilar desde 28 - 423 t/ha (Chave et al. 2001). En el Perú rangos para biomasa aérea establecidos por RAINFOR en bosque amazónico oscilan desde los 216.96 - 299.20 t/ha (Baker et al. 2004a), en una gradiente de 100 a 200 msnm aproximadamente, confirmando lo discutido anteriormente. Según Phillips et al. (1998), los bosques primarios en la cuenca Amazónica ganan en promedio de 0.62 ± 0.37 t C/ha/año (con un potencial de absorción del 40%), extrapolando valores para todos los bosques maduros neotropicales de 0.62 ± 0.30 Gt C/ha/año, criterio aceptado por la FAO (2000) afirmando que es probable que los bosques maduros puedan aumentar en biomasa, y así incrementar el almacenamiento de carbono atmosférico en ellos, aún si las cantidades anuales son pequeñas la absorción que ocurre en toda la cuenca Amazónica por el gran área que involucra la hace globalmente importante, donde el punto fundamental es el tiempo de acumulación.

1.2.8 Depósitos o reservorios de carbono

De acuerdo con la Guía de Buenas Prácticas del Uso de la Tierra, cambio del Uso de la tierra y bosques (IPCC, 2006) existen cinco tipos de depósitos de carbono (Cuadro

3). Según Araujo (2011) la clasificación de reservorios de carbono, considera dos componentes, la biomasa viva y la biomasa muerta (necromasa). La biomasa viva se subdivide en biomasa aérea y biomasa de raíces, tres estratos y/o componentes es necesario aplicar para incluir la biomasa aérea; la biomasa de árboles grandes (BAG), árboles pequeños (BAP) y biomasa herbácea (BH). La biomasa de raíces considera raíces finas y raíces gruesas. La necromasa, se considera tres componentes, árboles muertos en pie (necromasa arbórea parada), árboles muertos caídos (necromasa arbórea caída) y las ramitas, ramas, tallos con diámetro < 2 cm de grosor, hojarasca (necromasa sobre el suelo).

	DEPOSITO	DESCRIPCION
	Biomasa aérea	Toda la biomasa de la vegetación viva, tanto maderera como herbácea, que se halla por encima del suelo, incluidos tallos, cepas, ramas, corteza, semillas y follaje.
Biomasa	Biomasa subterránea	Toda la biomasa de las raíces vivas. A menudo, las raíces finas, de menos de 2 mm de diámetro (sugerido), se excluyen porque, empíricamente, no se las puede distinguir de la materia orgánica del suelo o de la hojarasca
	Madera muerta	Incluye toda la biomasa leñosa no viviente que no está contenida en la hojarasca, ya sea en pie, tendida en el suelo o enterrada. La madera muerta incluye la madera tendida en la superficie, las raíces muertas y las cepas de 10 cm de diámetro o más.
Materia orgánica muerta	Hojarasca	Incluye toda la biomasa no viva con un tamaño mayor que el límite establecido para la materia orgánica del suelo (sugerido 2 mm) y menor que el diámetro mínimo elegido para la madera muerta (p. ej. 10 cm), que yace muerta, en diversos estados de descomposición por encima o dentro del suelo mineral u orgánico. Incluye la capa de hojarasca como se la define habitualmente en las tipologías de suelo. Las raíces vivas finas por encima del suelo mineral u orgánico (por debajo del diámetro mínimo límite elegido para la biomasa subterránea) se incluyen con la hojarasca cuando no se las puede distinguir de esta última empíricamente.
Suelos	Materia orgánica del suelo	Incluye el carbono orgánico contenido en suelos minerales hasta una Profundidad dada, elegida por el país y aplicada coherentemente a lo largo de la serie temporal. Las raíces finas vivas y muertas que se encuentran dentro del suelo y que miden menos que el límite de diámetro Mínimo (sugerido 2 mm) para raíces. El valor por defecto para la profundidad del suelo es de 30 cm.

Cuadro Nº 03: Descripción de los distintos tipos de depósitos de carbono

Fuente: IPCC (2006)

1.2.9 Ecosistemas de bosques en el cambio climático

Los ecosistemas terrestres, en general, y los ecosistemas forestales, en particular, juegan un rol primordial en el equilibrio del clima. A nivel mundial, las emisiones de gases de efecto invernadero (GEI) relacionadas con el sector de uso de la tierra, cambio de uso y forestal (Land Use, Land Use Change and Forestry – LULUCF) representan el 17.4% de las emisiones globales. Por lo tanto, es el tercer sector contribuyente, luego del sector de la Energía (25.9%) y de la Industria (19.4%), pero antes del sector de la Agricultura (13.5%) y de los Transportes (13.1%) (Chenost *et al.* 2009). Si bien la deforestación tiene gran contribución en las emisiones antrópicas de GEI los ecosistemas forestales mitigan el cambio climático a través de la absorción de grandes cantidades de C0₂ gracias a la fotosíntesis.

SISTEMA	CARBONO (t C/ha)
Bosque primario	300
Bosque talado	100 - 200
Agricultura migratoria (rotación 25 años)	88
Sistema agroforestal complejo permanente	90
Sistema agroforestal complejo (rotaciones de 25 - 30	40 - 60
Plantaciones de arboles	11 - 61
Cultivos con barbecho corto (< 5 años)	5
Pastos y praderas	3

Cuadro Nº 04: Reservas de carbono superficial en los sistemas de roza y quema y otros usos alternativos, promediadas temporalmente.

Fuente: Palm et al. (1999:1), para CGIAR citado por Zacune, 2008.

Los reservorios más grandes de carbono almacenados en la vegetación y el suelo se encuentran en los bosques tropicales (60 y 45%, respectivamente respecto del total correspondiente a los bosques) debido a su gran extensión y a la relativamente alta densidad de carbono que los caracteriza. Las reservas de carbono de los bosques varían, dependiendo del tipo de bosque según el clima, el suelo, la gestión, la frecuencia de las perturbaciones, y el nivel de la degradación causada por los seres humanos (IPCC, 2001a: 5.6.1.1 citado por Zacune, 2008). En 2001, el IPCC estimó que los bosques templados capturaban y almacenaban en la región entre 1.4 y 2 toneladas de carbono/ ha/año. La apreciación de los bosques boreales era muy variable, dependiendo de tipo de bosque. Por otra parte, los bosques tropicales, seguían siendo fuente neta de carbono (IPCC, 2001a: 5.6.1.1 citado por Zacune, 2008). Pero la información en que se sustenta este tipo de evaluaciones cuestionada recientemente a partir de una investigación sobre el 'sumidero de carbono desaparecido'. Este sumidero desaparecido es la diferencia entre los resultados del modelo computarizado y los ensayos prácticos locales sobre la captura y almacenamiento de carbono en los bosques del Norte (WHRC, 2008 citado por Zacune, 2008). Según los modelos computarizados estos bosques estaban absorbiendo unos 2.400 millones de toneladas por año, pero las pruebas demostraron que la tasa real de absorción apenas llegaba a la mitad (Terra Daily, 2007 citado por Zacune, 2008).

Los resultados de esta investigación establecen que, si bien los bosques del Norte siguen siendo un sumidero de carbono, y los bosques tropicales siguen siendo una fuente, las cifras reales son muy diferentes de las que arrojan los modelos utilizados. A partir de muestras aéreas tomadas durante muchos años, los investigadores concluyeron que los bosques del Norte absorben efectivamente apenas 1.500 millones de toneladas de carbono por año, y los bosques tropicales absorben en realidad una cantidad de CO2 mucho mayor a las estimadas anteriormente (y que son una fuente neta de sólo 100 millones de toneladas). En otras palabras, alrededor del 40% de las emisiones de CO₂ que anteriormente se suponía que era absorbido por los bosques septentrionales, en realidad se absorbe en los trópicos (NSF, 2007 citado por Zacune, 2008). Varios estudios realizados en la Amazonia han documentado que tales bosques sí están almacenando carbono atmosférico en forma significativa, como lo evidencian los resultados de 104 parcelas neotropicales (Brown et al. 1996; Phillips et al. 1998; Mahli et al. 1998; Baker et al. 2004b y Mahli et al. 2004 citado por Quinto, 2010). Evidentemente, estos resultados son muy importantes para las políticas forestales que se deben aplicar para mitigar el cambio determinar climático.

La tierra esta cubierta por una capa de gases que deja entrar energía solar, la cual calienta la superficie de la tierra. Algunos de los gases en la atmósfera - llamados los gases de efecto invernadero (GEI) - impiden el escape de este calor hacia el espacio. Este es un efecto natural que mantiene la tierra a una temperatura promedio arriba del punto de congelación del agua y permite la vida tal como la conocemos. Pero, las actividades humanas están produciendo un exceso de gases de efecto invernadero (principalmente dióxido de carbono, metano y óxido nitroso) que están potencialmente calentando el clima de la tierra, un proceso conocido como cambio climático. Por ejemplo, las concentraciones atmosféricas de dióxido de carbono, el GEI antropogénico más importante debido a su volumen, han aumentado en un 30% desde los tiempos pre-industrializados, con un aumento concurrente de las temperaturas globales promedios

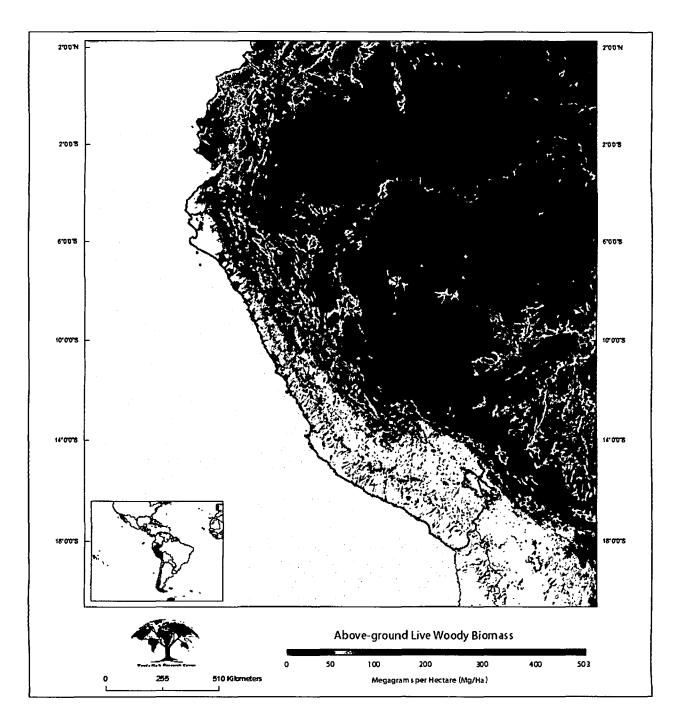
entre 0.3 y 0.6oC (IPCC, 1999). Investigaciones científicas sobre las emisiones de gases de efecto invernadero durante los últimos 10 años predicen que el cambio climático tendrá impactos negativos ambientales, sociales y económicos a nivel global. (Terra Daily, 2007 citado por Zacune, 2008).

Los impactos pueden incluir aumento del nivel de los mares, erosión costera, cambios dramáticos en patrones climáticos, aumento de enfermedades tropicales, la pérdida acelerada de biodiversidad, y la desertificación (Stuart y Moura Costa, 1998). Se estima que aproximadamente 75% de las emisiones de gases de efecto invernadero vienen de la quema de combustibles fósiles. La deforestación contribuye ya que la quema de bosques libera CO2 a la atmósfera. Debido a que los árboles fijan dióxido de carbono de la atmósfera a través de la fotosíntesis y lo almacenan en su biomasa, al reducir la extensión de bosques, se reduce la capacidad para absorber las emisiones globales de los gases de efecto invernadero, que cada año aumentan más. (IPCC, 2000.)

En la Cuadro 5 podemos observar la cantidad de carbono almacenada en los distintos tipos de reservorios terrestres, en los diferentes ecosistemas Mundo. En ella se dice que el total del carbono almacenado es de 2477 Gt C, lo que equivale a 9.082.000.000.000 t de CO2. Si comparamos esta cifra con las emisiones mundiales, alrededor de 25.000.000.000 t de CO2 en 2002, nos damos cuenta de la magnitud del carbono almacenado, y de la importancia que tiene su conservación. (IPCC, 2000.)

Bioma	Área (10 ⁹ ha)	Vegetación	Suelo	Total
Bosques tropicales	1.76	212	216	428
Bosques templados	1.04	59	100	159
Bosques boreales	1.37	88	471	559
Sabanas tropicales	2.25	66	264	330
Herbazales templados	1.25	9	295	304
Desiertos y semi-desiertos	4.55	8	191	199
Tundra	0.95	6	121	127
Humedales	0.35	15	225	240
Tierras de cultivo	1.60	3	128	131
Total mundial	15.12	466	2011	2477

Cuadro N°05: Cantidad mundial de carbono presente en la vegetación y en los reservorios de carbono hasta una profundidad de un metro.


Fuente: IPCC, 2000.

Un estudio publicado en Nature Climate Change hoy encuentra que la vegetación tropical contiene un 21 por ciento más de carbón o que los estudios previos habían sugerido. Usando una combinación de sensores remotos y datos de campo, los científicos del Centro de Investigación Woods Hole (WHRC), la Universidad de Boston y la

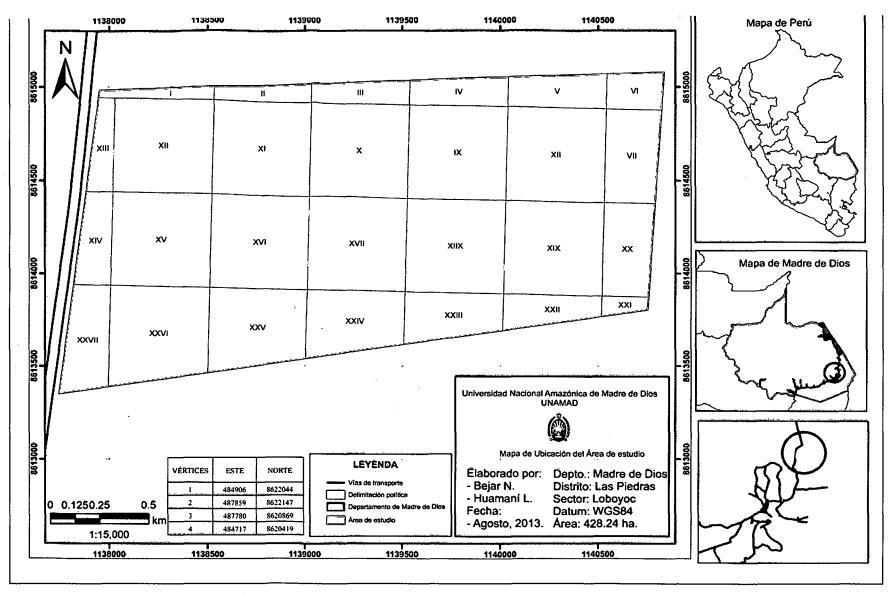
Universidad de Maryland, fueron capaces de producir el primer mapa " pared a pared" (con una resolución espacial de 500 mx 500 m.) de almacenamiento de carbono de los bosques, matorrales y sabanas en las zonas tropicales de África, Asia y América del Sur. Colores en el mapa representan la cantidad de densidad de carbono almacenado en la vegetación de una manera continua, Figura 4. Estimaciones fiables de almacenamiento de carbono son fundamentales para la comprensión de la cantidad de carbono liberado a la atmósfera por los cambios en la cubierta vegetal y uso del suelo.

El autor principal, Alessandro Baccini, un científico asistente en WHRC, explicó que el nuevo conjunto de datos proporciona una estimación espacial y temporal coherente de las existencias de carbono y una base más sólida para la estimación de las emisiones de carbono mediante una mejor caracterización de la densidad de carbono de los bosques que se ha perdido. " Por primera vez hemos sido capaces de obtener estimaciones precisas de densidades de carbono por medio de observaciones satelitales LiDAR en lugares que nunca se han medido ", dijo Baccini. " Esto es como tener un inventario forestal pantropical consistente, muy denso."

En muchos países en desarrollo, la deforestación es la mayor fuente de emisiones de gases de efecto invernadero. Con el fin de informar con fiabilidad las emisiones de la CMNUCC, así como para participar en los esquemas internacionales como la Reducción de Emisiones por Deforestación y Degradación de Bosques (REDD +), que establece una compensación para evitar la deforestación, estos países necesitan una forma precisa para calcular el carbono almacenado y rastrear la deforestación y la reforestación. (WHRC, 2012).

Mapa N° 01: almacenamiento de carbono en la vegetación tropical. Fuente: WHRC, 2012.

CAPÍTULO II


MATERIALES Y MÉTODOS

2.1. Descripción del Área de Estudio

2.1.1 Información General

El departamento de Madre de Dios, se ubica en la región sur oriental del territorio peruano, entre las coordenadas geográficas 9°55′33" y 13°20′04", latitud sur, 68°39′27" y 77°22'27", longitud Oeste. Presenta una localización estratégica por encontrarse en una región que cuenta con dos fronteras internacionales con Brasil y Bolivia.

Esta área fue cedida en cesión en uso por el INRENA a la UNAMAD en el año 2003, su accesibilidad es a través del eje carretero Puerto Maldonado-Iñapari, Km. 16, está caracterizado por tener una topografía suave. Toda el área es de vocación forestal, y existe una especie significativa y dominante llamado "castaño" Bertholletia *excelsa*, cuyas semillas obtenidas de sus frutos, son comercializados en el mercado interno y externo.

Mapa Nº 02: Ubicación del área de estudio, distrito Las Piedras, Provincia Tambopata, Madre de Dios, Perú. Fuente: Elaboración adaptada, 2013.

2.1.2 Ubicación Política

El área está ubicada en la carretera Puerto Maldonado- Iberia Km 16, margen derecho, lugar conocido como vivero El Bosque de propiedad de la Universidad Nacional Amazónica de Madre de Dios:

Departamento:

Madre de Dios

Provincia

Tambopata

Distrito

Las Piedras

Tipo de bosque:

Ta (Terraza alta)

Sector

Loboyoc

VÉRTICES	ESTE	NORTE
1	484906	8622044
2	487859	8622147
3	487780	8620869
4	484717	8620419
		ŀ

Cuadro Nº 06: Coordenadas de "El Bosque"

Fuente: Elaboración Propia, 2013.

2.1.3 Ubicación Geográfica

El vivero "El Bosque" está localizado en el norte de la Región Madre de Dios, presenta una extensión de 428.24 ha, entre 200-210 m de altitud y entre los 484 703 E y 8 620 418 N de Latitud Oeste y 487 857 E y 8 622 141 N Longitud Norte.

2.1.4 Ecología, Clima y Zonas de Vida

Se halla cubierta mayoritariamente por bosques subtropicales donde se realizan diversas actividades productivas, destacando entre ellas las extractivas madera y castañas. Recientemente y con gran futuro ha incursionado en el ecoturismo.

Sub-Húmedo

Sub Húmedo y Cálido.- comprende el sector Nor-Oriental de la Región. Se caracteriza por Presentar temperaturas promedio anuales de 25°C. Clima moderadamente lluvioso. (ZEE –MDD.2009)

2.1.5 Fisiografía

Terrazas altas ligeramente disectadas

Abarca una superficie aproximada de 1 185 494 ha. del departamento de Madre de Dios. Esta unidad corresponde a la primera etapa de disectación, la que se caracteriza por presentar una topografía plana a ligeramente inclinada, cortadas por disecciones de 15 a 25 % de pendiente, por lo que se observan cauces poco profundos y muy espaciados entre si, determinando que las áreas entre los cauces sean casi planas, homogéneas y con escasa a nula erosión. Esta unidad está conformada por sedimentos finos poco consolidados, de origen aluvial antiguo, notándose una lixiviación y movimiento de arcillas de las capas superficiales a las más profundas, con formación en algunos casos de pequeños nódulos ferromagnesianos. Estas unidades se ubican en los sectores central y oriental de la zona de estudio, hallándose las localidades de Puerto Maldonado, Bellavista, Alegría, y Palma Real, entre otras asentadas sobre ellas. (ZEE –MDD.2009)

2.1.6 Forestal

Bosque de Terrazas altas con rodales de Castaña (BTarC)

Esta unidad cubre una superficie aproximada de 1 251 084 ha, equivalente al 14.69% del área de estudio evaluada. Esta unidad es la segunda en extensión de superficial respecto a las otras unidades, se ubica en su mayor extensión en el sector este de la región, entre los ríos Manuripe, l Muymanu, Madre de Dios y el Tambopata, el relieve es relativamente plano, con alturas respecto al nivel de base local del río que fluctúa de 10 a 20 metros, presenta pendientes suaves llegando al 3 %, con algunos sectores disectados, que hace que el diseño de un aprovechamiento forestal maderable y de productos diferentes de la madera, como la castaña y la shiringa sea relativamente factible sin el riesgo del deterioro del ecosistema y económico. La vegetación predominante es la arbórea llegando muchos de ellos a sobrepasar los 35 metros de altura al igual que sus DAP superan un metros (100 cms), asociada con especies de palmeras tales como Huasai, Huacrapona, Cashapona, Huicungo, Shapaja y Ungurahui, con un sotobosque relativamente ralo con especies de regeneración natural de palmeras y árboles Su accesibilidad para el aprovechamiento de los recursos forestales es relativamente fácil por el relieve plano del terreno. (ZEE –MDD.2009).

2.1.7 Vegetación

Bosques semicaducifolios densos en planicies (Bsd-p)

Estas comunidades boscosas ocupan grandes extensiones, con 1314252 h (15,42 %), relieves planos, ondulados y ligeramente disectadas que definen redes de quebradas y riachuelos, suelo es arcilloso a areno-arcilloso, con buen drenaje. están localizados principalmente al sureste del departamento. En la fisonomía y estructura, en los terrenos planos el dosel supera los 30 m de alto y en los disectados superan los 35 m de alto y $DAP \ge 100$ cm, raras veces se encuentra fustes con DAP de 200 cm; los árboles emergentes llegan hasta 35-40 m de alto. También existen matas aisladas de paca. Guadua sp., cuyos culmos se entrecruzan hasta los 10-20 m de alto. En general, la fisonomía y estructura están conformadas por árboles grandes, con cobertura abierta a semiabierta, de comportamiento típicamente semicaducifolia (de julio a noviembre) con intensa fructificación, y abundancia de follaje de retoños y floración de diciembre a marzo. En el estrato superior se intercalan algunas especies de palmeras, con herbáceas epifitas y bejucos frondosos; en el estrato medio se hallan árboles y arbustos y palmas que miden entre 10 y < 20 m de alto. (ZEE –MDD.2009)

2.1.8 Geología

Cuaternario, Pleistoceno, Formación Maldonado

Definida por Portugal, (1960) y Sullins (1960), quienes usan los nombres Maldonado y Puerto Maldonado respectivamente. Su nombre ha sido designado por encontrarse su afloramiento tipo en la localidad de Puerto Maldonado. Esta unidad considera a todos los depósitos de gravas, conglomerados y areniscas que distribuyen en la penillanura de Madre de Dios, los cuales sobreyacen con discordancia a la Formación Madre de Dios. Esta formación constituye el mayor afloramiento de la cuenca Madre de Dios y se asume que continúa hacia el lado boliviano. Representa la mayor exposición geológica del área investigada. (ZEE –MDD.2009)

2.1. Materiales, Equipos, Herramientas y Servicios

I. Materiales	
Software (Windows office).	
Lápices, marcadores, sacapuntas	
Listones para marcar linderos y estacas	

Formularios de campo, instrucciones de monitoreo
Bolsas de plástico.
Bolsas de papel o tela para muestras de hojarasca y vegetación herbácea
Engrapadora para sellar las bolsas con muestras
Cinta métrica de 30 m
Rafia o pabilo
Cinta Dimétrico
II. Equipos
Laptop Toshiba Satélite.
Equipo para lluvia (botas de jebe, impermeable, etc.)
Equipo de seguridad (maletín de primeros auxilios, linternas, repelente de
insectos).
Navegador GPS map60 csx
Brújula Bruntom.
Horno de secado
Balanzas de precisión de 0.1 mg. para muestras de vegetación
III. Herramientas
Machete
Pieza de 50cm por 50cm de malla galvanizada de 5mm
Tijera podadora
IV. Servicios
Laboratorio ambiental Regional.

Cuadro Nº 07: Materiales, Equipos, Herramientas y Servicios utilizados en la investigación. Fuente: Elaboración Propia, 2013

2.2. Metodología

Metodología para identificación de especies:

El método de identificación del bosque de terraza alta a nivel de familia, género y especie; considerando el uso de claves, comparación del material de herbario, uso de bibliografía especializada y consulta con especialistas en dendrología, de acuerdo con el Sistema de Clasificación Taxonómico Filogenético de Angiospermas de Jud Grupo III (APG III, 2009) actualizado al 2011 del site: http://www.tropicos.org/ y de acuerdo al Catalogo de Flora de Angiospermas y Gimnospermas del Perú, de Bracko & Zaruchi (1993).

Metodología para determinar densidad:

Las densidades de madera de árboles vivos se obtuvo de la base de datos de RAINFOR (Peacock et al. 2007) y la base de datos de densidad de madera de especies de Baker et al. (2004) y Chave et al. (2006). La densidad de la madera se relacionó a los datos de parcelas en función a cada individuo o árbol, es decir se utiliza la densidad de la especie a la que corresponde cada individuo. Es así, que en los casos que faltaban datos de densidad de especies se utilizó el promedio de densidad por género o por familia. Para

los árboles no identificados se utilizó el promedio de la densidad de madera de todos los árboles en la parcela

Metodología de cuantificación de carbono:

El método que se utilizó en el diseño de la parcela y el inventario de carbono en el reservorio de biomasa aérea y sus componentes (biomasa de árboles grandes - BAG, biomasa de árboles pequeños - BAP y biomasa herbácea - BH). A continuación se presenta el proceso secuencial:

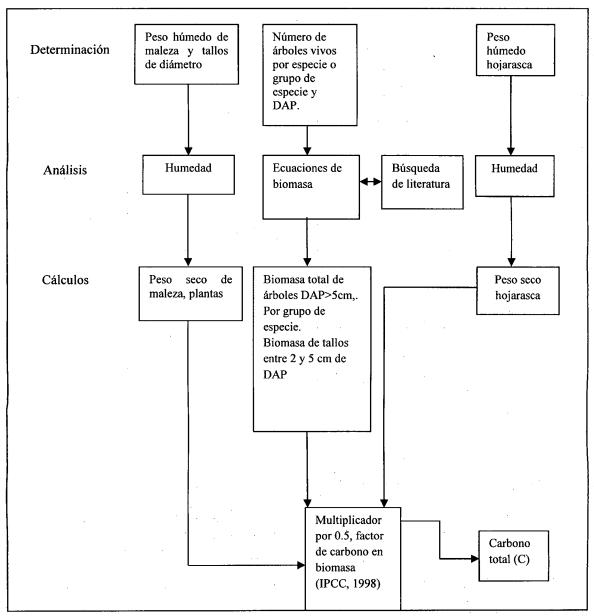


Diagrama N°01: Resumen de la metodología para la obtención de biomasa. Fuente: MC Dicken, 1997, adaptado por Márquez, 2000. Fundación Solar.

2.2.1. Tipo de investigación

La investigación fue descriptiva, consistió en observar y estimar los componentes de biomasa de árboles grandes-BAG, biomasa de árboles pequeños-BAP y biomasa de herbáceas-BH, biomasa de hojarasca-BH, biomasa de materia muerta-BMM. A partir de estos datos se estimó la biomasa aérea, el stock de carbono aéreo y el carbono equivalente (CO2-equi).

2.2.2. Estadística empleada

2.2.2.1.Para la determinación del número de parcelas

Para la obtención del número de parcelas se utilizará la siguiente fórmula:

$$n = \frac{t^2 (CV)^2}{E_{\%}^2}$$

Fuente: Citado por Márquez, 2000.

Dónde:

n: Número de muestras.

t: el valor de la tabla de t de Student con 9 grados de libertad es 1.83.

CV: 26.3% (Tomada de: Aldana-Pereira, 2011. y verificado con datos de muestreo del Diplomado en Gestión Ambiental del Vivero el Bosque, 2011. Y calculada nuevamente con 6 parcelas prueba.

E: Error de muestreo al 10 %.

2.2.2.2.Para la determinación de carbono con los datos de campo:

A. Cálculos desarrollados para obtener los resultados de evaluación de biomasa

1) Biomasa arriba del suelo

Para calcular la biomasa arriba del suelo se calculo la biomasa contenida en tres fuentes distintas:

CB: BTL + BMH + BAPC

Fuente: Citado por Márquez, 2000

CB: Cálculo de biomasa.

BTL: Biomasa de tallos leñosos.

BMH: Biomasa de maleza y hojarasca.

BAPC: Biomasa de árboles en pie y caídos.

> Tallos leñosos con DAP mayor a 5 cm y con 5 cm <DAP> 2 cm

Para el cálculo de biomasa de tallos de DAP mayor a 2 cm, se utilizara las ecuaciones de factor de expansión de Volumen y el factor de expansión de Biomasa.

• Área basal:

$$AB = 0.7854 * D^2$$

Fuente: Citado por Márquez, 2000.

Dónde:

0.7854: Coeficiente

D²: Diámetro al cuadrado

• Volumen:

Fuente: Citado por Márquez, 2000,

Dónde:

V: Volumen

D^2: Diámetro al cuadrado

L: Longitud.

2) Maleza y hojarasca

Para el cálculo de la biomasa de hojarasca y maleza se obtiene el valor para el contenido de humedad. Este valor se calcula de la siguiente manera:

Fuente: Citado por Márquez, 2000.

Donde;

CH: Contenido de humedad

Phs: Peso húmedo sub muestra (Kg)

Pss: Peso seco sub muestra (Kg)

Con el valor de contenido de humedad se procede a calcular la proporción del peso húmedo que corresponde a biomasa:

Y=Pht-(Pht*CH)

Fuente: Citado por Márquez, 2000.

Donde;

Y: Biomasa en kilogramos

Pht: Peso húmedo total (Kg)

CH: Contenido de humedad

Los valores obtenidos se multiplicarán por 0.001 para obtener toneladas. Este valor se multiplica por 0.5 lo que da toneladas de carbono fijado. Las toneladas de carbono se dividen dentro del total de metros muestreados. Esta operación da t C/m y al multiplicarlo por 10,000 m se obtienen t C/ha.

3) Árboles muertos en pie y troncos caídos

Los árboles muertos en pie deben utilizar las ecuaciones de biomasa presentada en el estudio de la Fundación Solar con la condición de que se tome sólo el 70% de la biomasa reportada por la ecuación. De esta manera la ecuación para árboles

latifoliados de la zona húmeda podría quedar así:

$$Y = {\exp[-2.134 + 2.530 * Ln (D)]} *0.7$$

Fuente: Citado por Márquez, 2000

Donde;

Y: Biomasa en kilogramos

D: Diámetro a la altura del pecho en cm.

ln :Logaritmo natural exp: Elevado

Para troncos caídos, el procedimiento consiste en utilizar el promedio de los dos diámetros medidos y con la altura definir el volumen del tronco con la fórmula de volumen de un cilindro y después con la densidad de la madera definir biomasa.

Y = área basal*altura*densidad

Fuente: Citado por Márquez, 2000

B. Ecuaciones utilizadas para la determinación de CO₂

1) CUANTIFICACIÓN DE CARBONO

> Cuantificación de Dióxido de Carbono

CO₂=C*kr

Fuente: Citado por Márquez, 2000

Donde;

CO₂: Toneladas de dióxido de carbono

C: Carbono

kr :44/12

2.2.2.3. Cálculo de la cantidad de Carbono equivalente (CO2-equi)

Para saber la cantidad de carbono equivalente (CO₂-equi) que evitaríamos en emitir a la atmósfera, a partir de la cantidad de carbono almacenado en la biomasa aérea, se

multiplica el stock de carbono aéreo por el factor de conversión de 3.67, a carbono equivalente (Rügnitz et al. 2009).

$$CO_2$$
-equi (t CO_2 -equi/ha) = $CT*3.67$

Fuente: Rügnitz et al. 2009.

Dónde:

CO₂-equi

: Cantidad de carbono equivalente (t CO₂-equi/ha).

CT

: Stock de carbono aéreo (t C/ha).

3.67

: Factor de conversión a carbono equivalente (Rügnitz et al. 2009).

Para extrapolar la cantidad de carbono equivalente a toda el área de estudio, se multiplicará la cantidad de carbono equivalente por 428.24 ha

$$CO_2T$$
 (t C) = CO_2 -equi x Ar

Fuente: Rügnitz et al. 2009

Dónde:

 CO_2T

: Cantidad total de carbono equivalente por todo el área (t CO₂

equi).

CO₂-equi

: Cantidad de carbono equivalente (t CO₂-equi /ha).

Ar

: Número de hectáreas (ha).

2.2.2.4. Fase de Laboratorio

Las ecuaciones alométricas generalmente son consideradas el método más preciso para estimar biomasa y, por lo tanto, carbono:

Ecuación alométrica	Especies	Diámetros (cm), otros	N	R ²	Origen de información	Fuentes
$Y = \rho^* \operatorname{Exp}(-1.499 + 2.148*\operatorname{Ln}(DAP) + 0.207*(\operatorname{Ln}(DAP))^2 - 0.0281*(\operatorname{Ln}(DAP))^3)$	General	≥ 5	143	0.96	Neotropicos	1
Y = Exp(-1.7689 + 2.3770*Ln(DAP))	General	1-5	20	0.96	Manaos, Brasil	2
$Y = 12.764 + 0.2588 *DAP^{2.0515}$	Cecropia sp.	1 - 40	(*)	(*)	Bolivia	3
$Y = -0.0582*H^3 + 4.5868*H^2 - 43.198*H + 126.82$	Mauritia flexuosa	6 - 41 altura	16	0.99	Iquitos, Perú	4
$Y = 6.666 + 12.826*H^{0.5}*Ln(H)$	Euterpe precatoria	33 altura	(*)	0.75	Bolivia	5
$Y = 139.48 + 7.308H^{1.133}$	Oenocarpus bataua	0.5 - 2.5 altura	83	0.83	Porce, Colombia	6
Y = Exp (0.952*Ln(DAP) + 0.90*Ln(H) -0.552)	Oenocarpus mapora	≥ 1	.15	0.89	Porce, Colombia	7

$Y = 23.487 + 41.851(Ln(H))^2$	Attalea phalerata	1-11 altura	(*)	0.62	Bolivia	5
$Y = Exp(-2.249 + 0.861*Ln(DAP^2*H))$	Otras palmeras	≥ 1	37	0.94	Porce, Colombia	7
Y = 7.2581DAC - 7.0782	Guadua sp.	≥ 2.5	(*)	0.89	Madre de Dios, Perú	8
Y = [-21.379 + 0.31375(DAP) + 0.296H]*1582.454	Dipteryx mycrantha	≥30 y 14.28 - 36 altura	64	0.83	Madre de Dios, Perú	9
Y = [-6.719 + 0.13495(DAP) + 0.149H]*1722.030	Manilkara bidentata	≥30 y 9.1 – 17 altura	62	0.88	Madre de Dios, Perú	9
Y = [-3.979 + 0.07764(DAP) + 0.062H]*1636.715	Myroxylum balsamun	≥30 y 9.1 – 27 altura	62	0.84	Madre de Dios, Perú	9
Y = Exp (0.028 + 1.841*Ln(DAP))	Lianas	1-11	33	0.87	Porce, Colombia	6

Cuadro 08: Ecuaciones alométricas para estimar la biomasa (Kg de materia seca por árbol) a nivel local y para regiones amazónicas.

Fuentes: 1) Chave et al. (2005); 2) Nascimento & Laurance (2002); 3) Pearson et al. (2005); 4) Freitas et al. (2006); 5) Delaney et al. (1999), Brown et al. (2001); 6) Sierra et al. (2007); 7) Restrepo et al. (2003); 8) Recavarren et al. (2009) y 9) Vallenas & Parrillo (2006) (modificado). Fuente: LULUCF (2003) citado por Rügnitz et al. (2009) (modificado).

Componentes de biomasa	Autor	Formula
	Chambers et al. 2001	DAP \(\ge 5\text{cm:}\) B =\text{exp}(0.33*\text{Ln}(DAP)+0.933*\text{Ln}(DAP))^2-0.122*\text{(Ln}(DAP))^3-0.37\)
Biomasa en	Baker et al. 2004	DAP ≥5cm: B =exp(0.33*Ln(DAP)+0.933*(Ln(DAP))^2- 0.122*(Ln(DAP))^3-0.37)*p/0.67
arboles grandes (árboles y	Chave et al. 2005	, DAP ≥5cm: B = ρ* exp(- 1.499+2.148*Ln(DAP)+0.207*(Ln(DAP))^2- 0.0281*(Ln(DAP))^3)
fustales)	Chave et al. 2005	DAP ≥5cm: B =exp(-2.977+Ln(ρ*DAP^2*H))
	Brown et al. 1989	$DAP \ge 5cm: Y = exp[-2.4090 + 0.9522 * ln(D 2 HS)]$
Biomasa por encima del suelo Herbácea (Brinzales), Hojarasca y Materia muerta	Márquez,	CH = (Phs Pss)/ Phs, Y = Pht - (Pht*CH)
CO2	2000.	CO2 = C * kr
Arboles pequeños (Latizal)de ≥2-10 cm.		$Y = \exp \{-2.134 + 2.530*ln(DAP)\}$
Palmeras		Y = 4.5 + 7.7 * H

Cuadro N°09: Formulas utilizadas para la obtención de biomasa; por cada tipo de componente del bosque Fuente: Elaboración Propia, 2013.

Dónde:

Y: Es la biomasa de árboles, palmeras y lianas en kilogramos (Kg) de peso seco.

DAP: Es el diámetro a la altura del pecho (1.30 m) en centímetros (cm).

DAC: Es el diámetro del cuello (cm).

H: Es la altura total (m).

Ln: Es el logaritmo neperiano.

Exp: Es el exponencial, es el inverso de Ln.

ρ: Es la densidad de la madera (g/cm3). Base de datos para Bosques Amazónicos Zanne et al. (2009).

N: Es el número de muestras utilizadas para construir la ecuación.

R2: Es el coeficiente de correlación. (*): Sin información.

Se recomienda emplear ecuaciones alométricas generadas localmente y a nivel de bosques tropicales (Cuadro 08) (Araujo *et al.* 1999; Chambers *et al.* 2001; Del Valle *et al.* 2003 citado por Quinto, 2010).

Para estimar la cantidad de carbono equivalente de toda el área de estudio, se multiplicó la cantidad de carbono equivalente (54.58 t CO2-equi/ha) por el área de estudio de 428.24 ha, lo reemplazamos en la siguiente ecuación:

$$CO_2T$$
 (t C) = CO_2 equi x Ar

Fuente: Rügnitz et al. 2009

Dónde:

CO2T : Cantidad total de carbono equivalente por todo el área (t CO2-equi).

CO2-equi : Cantidad de carbono equivalente (t CO2-equi/ha).

Ar : Número de hectáreas ha).

2.3. Descripción de las fuentes a medir

2.3.1. Biomasa por encima del suelo

La biomasa por encima del suelo está compuesta por los árboles (árboles y fustales), la vegetación arbustiva (latizales) y la vegetación herbácea (brinzales). Es muy importante hacer notar que el componente principal de esta fuente son los árboles. En las experiencias, la maleza, por su muy baja contribución en términos de fijación, puede dejar de muestrearse. Esto es una decisión del equipo técnico. (Márquez, 2000.)

La hojarasca y otra materia vegetal muerta se refieren a vegetación que se encuentra en proceso de descomposición. Esta fuente de biomasa se mide de dos maneras. La hojarasca en sí, se colecta del suelo, en el área de la parcela donde se midió la vegetación herbácea. La otra materia vegetal muerta se refiere a los árboles muertos ya sea en pie o caídos en gran porcentaje. (Márquez, 2000.)

Los árboles muertos en pie o caídos se miden en las parcelas correspondientes a los diámetros respectivos de árboles vivos.

Delimitación de parcelas y sub parcelas de muestreo

Forma de las parcelas : Rectangulares

Tamaño de una parcela : 20 m * 50 m

Área de parcela : 1000 m^2

Tamaño de una subparcela : 2m * 2m

Subparcelas por parcela : 5

Área de cada subparcela : 4 m²

Número de parcelas : 22

Total de hectáreas muestreadas: 2.3 ha.

Tales como se muestran en el siguiente diagrama y siguiente mapa de distribución de las muestras.

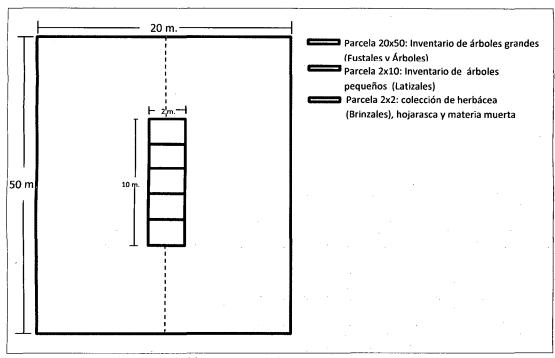
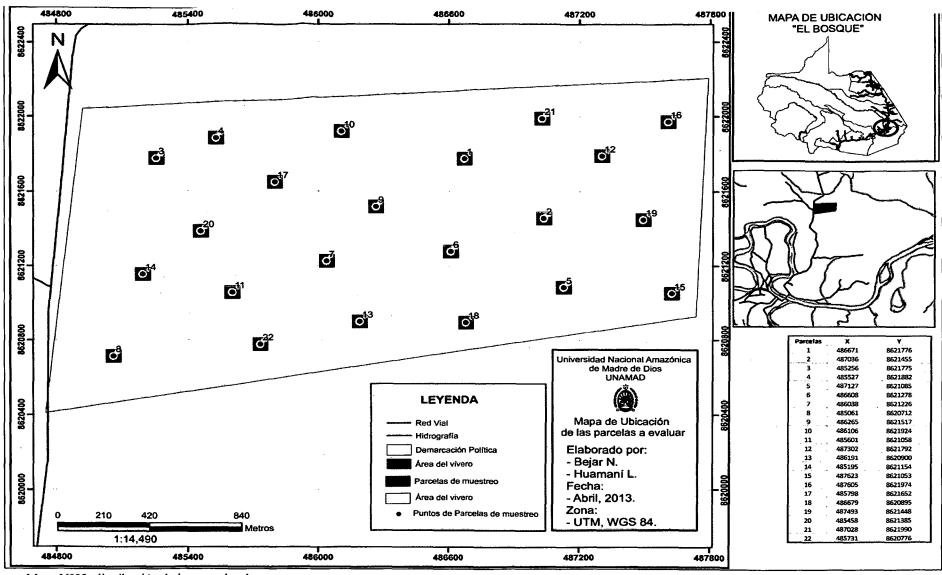



Diagrama N°02: diseño de parcela de biomasa para carbono.

Fuente: Elaboración propia (2013); Honorio et al. (2010) y Araujo (2011).

Mapa N°03: distribución de las parcelas de muestreo.

Fuente: Elaboración adaptada, 2013.

2.3.2. Recolección de vegetación herbácea (Brinzal) y hojarasca

- a) Definidas las sub parcelas de 4 m² y delimitadas se seleccionara la vegetación herbácea y los tallos leñosos menores a 2 cm de diámetro que se encontraron dentro de la sub parcela.
- b) Se colecto esta vegetación y se colocó en una bolsa de muestreo, se pesó y se registró el peso en la libreta de campo, así mismo se colocó las etiquetas de identificación en cada una de las bolsas con la muestra colectada.
- c) Luego con un rastrillo se colecto la hojarasca que se encuentro dentro de la sub parcela y se repite el procedimiento del acápite (b).
- d) Se midió la circunferencia mayor, menor y la longitud de los árboles muertos.
- e) Se trasladó las muestras de vegetación herbácea y de hojarasca a un galpón para que inicie el secado al aire libre.
- f) Se determinó el peso seco de cada muestra y con los pesos registrados al momento de la colección se determinará el contenido de la humedad.

2.3.3. Inventario de tallos leñosos (árboles y fustales)

- g) En cada parcela se midió la circunferencia de cada árbol a 1.30 m de altura de acuerdo a las características de cada árbol y se registró en la libreta de campo.
- h) Posteriormente se determinó la altura de los árboles y se registró en la libreta.
- i) En gabinete se determinó los diámetros haciendo uso de la fórmula correspondiente.
- j) Se realizó los cálculos desarrollados para obtener los resultados de la reserva de carbono.
- k) Por último se contrastó las pruebas de hipótesis y se presentó los resultados.

CAPITULO III

RESULTADOS Y DISCUSIONES

3.1 Procesamiento de datos de campo

3.1.1 Estimación de Biomasa en los componentes.

3.1.1.1 Biomasa de árboles grandes (árboles y fustales)

Biomasa: DAP	Biomasa: DAP, ρ	Biomasa: DAP, ρ	Biomasa: DAP, ρ, H	Biomasa: DAP, ρ, Η Brown
Chambers et al.	Baker et al.	Chave et al.	Chave et al.	Brown et al.
2001, DAP	2004, DAP	2005, DAP	2005, DAP	1989, DAP
≥5cm	≥5cm:	≥5cm	≥5cm:	≥5cm:
309.09	316.39	367.59	271.05	292.82

Cuadro Nº 10: Estimación de biomasa tC/ha según diferentes autores.

Fuente: Elaboración Propia, 2013.

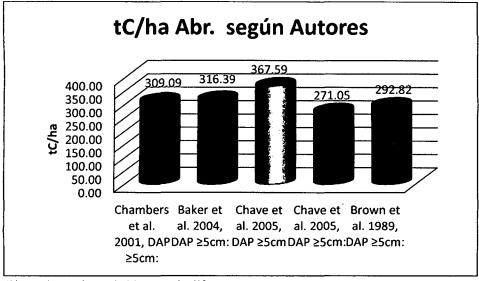


Figura 04. Valores de biomasa de diferentes autores

Fuente: Elaboración Propia, 2013.

Nº de Parcela	Biomasa: DAP, ρ	Biomasa: DAP, ρ	Biomasa: DAP, ρ, H	Biomasa: DAP, ρ, Η Brown
1	25742.2162	25758.4638	19193.2289	21508.5002
2	33462.0656	36138.2944	27803.3488	30322.196
3	24315.2612	33073.2307	23296.5774	24536.2681
4	22801.9988	23470.221	18411.7202	20437.9705
5	40842.8858	48995.2941	35687.6397	38120.4079
6	20400.6586	19748.7761	13615.247	15624.591
7	23218.314	23682.6755	17250.5	19436.7767
8	24981.7618	26801.4761	20097.4871	21981.8364
9	11183.166	10796.0514	7472.35559	8742.24452
10	28269.0626	30165.9458	21287.7898	23517.4114

11	46956.3743	55914.3086	39128.9935	42041.6236
12	38450.7152	41075.5505	32392.4885	35096.6625
13	21815.247	40923.6924	33373.7347	33038.5937
14	43880.9214	56308.8192	43070.8589	45550.8558
15	14457.1275	13863.7028	9588.75782	11076.8924
16	21135.0545	21981.2977	15602.6767	17544.6315
17	28472.2291	29704.9911	22123.8253	24290.3722
18	25871.2932	26169.1101	19442.6848	21813.2824
19	45048.8592	53167.5951	36698.7333	39300.5196
20	31797.7241	52746.1909	40328.3047	40971.539
21	13317.8969	12697.0836	8838.35902	10361.3987
22	46361.2216	52000.8113	37393.2839	40320.9523
Biomasa (tn)	632.7820546	735.1835824	542.0985957	585.6355262
Almacenado (tC/ha)	316.3910273	367.5917912	271.0492978	292.8177631

Cuadro N°11: Valores de biomasa en las 22 parcelas según las ecuaciones alométricas de diferentes autores.

Fuente: Elaboración Propia, 2013.

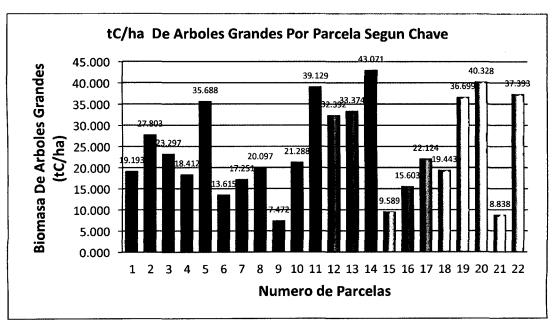


Figura 05. Valores de estimación de biomasa con la ecuación de Chave et al. 2005, DAP \geq 5cm: B =exp(-2.977+Ln(ρ *DAP 2 *H)).

Fuente: Elaboración Propia, 2013.

Márquez (2000) indica que en los bosques maduros Latifoliados la biomasa aérea es de 287 tC/ha, el error standard calculado para las reservas de carbono de ambos bosques permite inferir, parcialmente, acerca de la variabilidad de las reservas de carbono. Los valores para el error standard están limitados por el número de parcelas establecidas, pero indican que ambos bosques presentan un rango de fijación de carbono confiable dentro de aproximadamente 30-40 toneladas de carbono por hectárea. Para el nivel de pre-muestreo al que están los datos presentados aquí, este rango es adecuado y permite

inferir el nivel de incursión necesario para contar con datos confiables dentro de un rango de error menor.

Anderson (2012) indica que los bosques de crecimiento lento de la Amazonía central y oriental (este), donde los suelos son más pobres, tienen significativamente biomasa aérea más altos (300 – 400 t/ha) y una mayor densidad de la madera, los árboles son más altos que en los rodales en el noroeste y el suroeste de la Amazonía, donde la biomasa aérea son mas bajos (200 – 300 t/ha). Sin embargo la productividad y el dinamismo del bosque, es mayor en la Amazonía occidental (oeste) que en los bosques centrales y orientales (este).

Martel y Cairapoma (2012), estimo datos de datos 335.11 tC/ha, para un bosque de terraza alta del río los amigos, Mamani (2012) estimó en un bosque con paca de terrazas altas de la concesión de conservación "Gallocunca", Madre de Dios, en 306.07 tC/ha.

Al Noreste de la Amazonía, en bosques primarios de Guyana Francesa, Chave et al. (2001); Chave et al. (2005) y Chave et al. (2008) estimaron valores de biomasa encima del suelo en 302 ± 32 t/ha, en 138.048 t/ha y en 365.7 - 403 t/ha respectivamente.

Al Este de la Amazonía, en bosques primarios de Brasil, en la región de Tapajós y Minas Gerais. Keller et al. (2001) citado por Honorio et al. (2010) y Boina (2008) estimaron valores de biomasa en 372 t/ha y en 69.18 – 152.35 t/ha respectivamente.

En la zona Central de la Amazonía, en bosques primarios Brasil, en la región de Manaus, Nascimento & Laurance (2002); Higuchi et al. (2003) y Chave et al. (2005) estimaron valores de biomasa arbórea en 304 – 432 t/ha, 312 – 344 t/ha y 147.928 t/ha respectivamente.

Al Noroeste de la Amazonía, en bosques primarios tropicales de Colombia, en la región de: Antioquia, Antioquia, Araracuara, Salero y Antioquia. Orrego & Del Valle (2001); Herrera (2002); Chave et al. (2005); Quinto (2010) y Yepes et al. (2011) estimaron valores de biomasa arbórea en 232.89 t/ha, en 229.493 t/ha, en 136.122 t /ha, en 179.06 - 238.42 t/ha y en 244 ± 63 t/ha respectivamente.

También al Noroeste de la Amazonía, en bosques primarios de Venezuela y Ecuador, en la región de: San Carlos y Cordillera del Cóndor, Chave et al. (2005) y la

FUNDACIÓN NATURA (2009) estimaron valores de biomasa del estrato arbóreo en 27.379 t/ha y en 43.7 - 199.4 t/ha respectivamente.

Al Suroeste de la Amazonía, en bosques primarios de Brasil, en la región de: Amazonas, Acre, Mato Grosso y Pará, Nogueira et al. (2008) citado por Honorio et al. (2010), reportaron valores de biomasa en 118 – 240 t/ha.

También al Suroeste de la Amazonía, en bosques primarios de Bolivia, Dauber et al. (2002); Araujo et al. (2006); Paredes (2008); Villegas (2008) y Selaya (2011) registraron valores de biomasa arbórea o encima del suelo en 91 – 171 t/ha, en 260.6 - 207.85 t/ha del Parque Nacional Noel Kempff Mercado en la región de Santa Cruz, en 293.10 - 295.11 t/ha, en 160 - 170 t/ha y en 189.75 t/ha para la región de Pando respectivamente.

Al respecto al Suroeste de la Amazonía, en bosques primarios tropicales de Perú, Baker et al. (2004) citado por Ureta (2009) estimaron valores en promedio de biomasa encima del suelo en 216.96 - 299.20 t/ha.

Chambi (2001); Lujan & Chávez (2006) y Ureta (2009) estimaron valores en promedio de biomasa arbórea en 372.492 t/ha para la región Madre de Dios, en 232.66 t/ha para la región Junín y en 129.32 – 202.24 t/ha para el Parque Nacional Yanachaga Chemillén, región Pasco respectivamente.

Una vez más se confirma la aseveración de Anderson (2012), de que los valores altos de biomasa en 300 – 400 t/ha se encuentran en bosques de la Amazonía oriental (Mamani 2012; Chave et al. 2001; Keller et al. 2001; Nascimento & Laurance, 2002; Higuchi et al. 2003; Chave et al. 2005; Boina, 2008 y Chave et al. 2008) y los valores bajos de biomasa en 200 – 300 t/ha se encuentran en bosques de la Amazonía occidental (Orrego & Del Valle, 2001; Dauber et al. 2002; Herrera, 2002; Baker et al. 2004; Chave et al. 2005; Araujo et al. 2006; Lujan & Chávez, 2006; Nogueira et al. 2008; Paredes, 2008; Villegas, 2008; FUNDACIÓN NATURA, 2009; Ureta, 2009; Quinto, 2010; Selaya, 2011 y Yepes et al. 2011), que podría deberse a la presencia de bosques de bambú.

Respecto de las diferencias de la variación de las estimaciones de biomasa, Sarmiento et al. (2005) enfatiza que se debería a procedimientos metodológicos, que surgen del diseño, la intensidad de muestreo, del tamaño de la unidad de muestreo, de datos de campo, de las ecuaciones alométricas y de datos de teledetección (sistemas de

información geográfica, satélites, sensores, imágenes entre otros). También existe la gran variabilidad de características estructurales entre los bosques y la variación real en biomasa entre los bosques primarios y secundarios, evidente a diferentes escalas espaciales, desde la parcela hasta el conjunto del bioma. A pesar de lo referido anteriormente, estas variaciones de biomasa se encuentran en un rango de 300 – 400 t/ha para bosques primarios de la Amazonía oriental (este) y en un rango 200 – 300 t/ha para bosques primarios de la Amazonía occidental (oeste) como refiere Anderson (2012).

Al estimar la biomasa de árboles grandes de especies arbóreas con DAP ≥10cm, en 22 parcelas de muestreo de 0.1 ha (20*50 m), del bosque de terraza alta, estimo valores de 271.05 tC/ha biomasa según la ecuación alométrica (Chave et al. 2005, DAP ≥5cm: B =exp(-2.977+Ln(ρ*DAP^2*H))), se estimo valores de 43.07 ± 7.47 t C/ha en las parcela 14 y 9 respectivamente, como se muestra en el Cuadro N° 11 y la Figura 05.

Según los resultados obtenidos 271.05 tC/ha (Chave et al. 2005, DAP ≥5cm: B =exp(-2.977+Ln(ρ*DAP^2*H))), muestran valores aproximados de biomasa se encuentran en el rango de biomasa pertenecientes a este tipo de bosque, pese a ser un bosque primario perturbado por consiguiente es el que se acerca más a estos valores a diferencia de los demás autores como se muestra en el Cuadro N° 10 y 11, es la que asevera y se ajusta a los resultados mencionados anteriormente según los autores y para el tipo de bosque. (Orrego & Del Valle, 2001; Dauber et al. 2002; Herrera, 2002; Baker et al. 2004; Chave et al. 2005; Araujo et al. 2006; Lujan & Chávez, 2006; Nogueira et al. 2008; Paredes, 2008; Villegas, 2008; FUNDACIÓN NATURA, 2009; Ureta, 2009; Quinto, 2010; Selaya, 2011 y Yepes et al. 2011) y America Central (Clark & Clark, 2000; Arreaga, 2002; Chave et al. 2003 y Chave et al. 2005).

3.1.2 Cantidad de carbono equivalente (CO2-equi)

Una tonelada de carbono equivale a 3,67 toneladas de CO2. (Obtenido en razón de los pesos moleculares 44/12). Para saber la cantidad de CO2 emitido o almacenado a partir de la cantidad de carbono de un determinado depósito se debe multiplicar esta por 3,67 según Rügnitz, M. T.; Chacón, M. L.; Porro R. Guía para la Determinación de Carbono en Pequeñas Propiedades Rurales -- 1. ed. -- Lima, Perú.: Centro Mundial Agroflorestal (ICRAF) / Consorcio Iniciativa Amazónica (IA). 2009. 55 p.

Para estimar la cantidad de carbono equivalente de toda el área de estudio, se multiplicó la cantidad de carbono equivalente (15386.66 ± 12915.72 tCO₂-equi) por el área de estudio de 428.24 ha, lo reemplazamos en la siguiente ecuación:

CO ₂ Equiv.					
Min	12915.72				
Max	15386.66				
Prom	8800.33				
Total (tCO2)	452.16				
Total del	ě				
área(tCO2/ha)	193632.7888				

Cuadro N° 12: Carbono Equivalente por toda el área (t CO2-equi). Fuente: Elaboración propia, 2013.

Al Centro de la Amazonía, en bosques primarios tropicales de Brasil, en la región de Manaus. Nascimiento & Laurance (2002) registraron valores de carbono equivalente en 653.89 t CO₂-equi/ha Al Noroeste de la Amazonía, en bosques primarios tropicales de Colombia, en la región de: Antioquia, Antioquia, Porce y Eje Cafetero. Orrego & Del Valle (2001); Herrera (2002); Sierra *et al.* (2007) y Arango & Camargo (2011), estimaron valores de cantidad de carbono equivalente en 424.46 t CO₂-equi/ha, en 422.307 t CO₂-equi/ha, en 408.372 t CO₂-equi/ha y en 462.42 ±14.68 t CO₂-equi/ha para bosques de bambú respectivamente.

En America Central, al Noroeste de la Amazonía y al Suroeste de la Amazonía, en bosques primarios tropicales de Guatemala, Costa Rica, Ecuador, Paraguay y Bolivia, en la región de: Petén, Punta Arenas, Cordillera del Cóndor, Caazapá y Pando. Arreaga (2002); Nascimiento & Laurance (2002);WINROCK (2006);FUNDACIÓN NATURA (2009); Pizzurno (2010) y Selaya (2011) reportaron valores de cantidad de carbono equivalente en 186.07 - 384.14 t CO₂-equi/ha para bosques con manejo forestal de la Reserva de Biosfera Maya, en 653.89 t CO₂-equi/ha, en 730.33 -979.89 t CO₂- equi/ha (biomasa aérea y hojarasca) para la Península de Osa, en 116.89 - 438.20 t CO₂- equi/ha, en 447.74 - 577.66 t CO₂-equi/ha para bosques del Parque Nacional Caazapá y en 349.101 t CO2-equi/ha respectivamente.

Al Suroeste de la Amazonía, en bosques primarios tropicales de Perú, Lapeyre *et al.* (2004); Freitas *et al.* (2006) y Lujan & Chávez (2006) estimaron valores en promedio de cantidad de carbono equivalente en 676.38 t CO₂-equi/ha (árboles vivos y

sotobosque) para la región San Martín, 301.45 – 408.104 t CO₂-equi/ha para la Reserva Nacional Pacaya Samiria (RNPS), región Iquitos y en 2273.05 t CO₂-equi/ha para la región Junín respectivamente.

Al respecto en bosques primarios del departamento de Madre de Dios, Perú, en este caso en un bosque con paca. Chambi (2001); WINROCK (2006a); Cheirasco *et al.* (2009) y AIDER (2011) registraron valores de cantidad de carbono equivalente en 760.505 t CO₂-equi/ha para la zona boscosa de la cuenca del río Madre de Dios e Inambari, en 451.41 t CO₂-equi/ha para la Concesión de Conservación Los Amigos, en 835.40 t CO₂-equi/ha (biomasa aérea y subterránea) para las Concesiones Forestales de Maderacre y Maderyja y en 334.52 t CO₂-equi/ha para un bosque de terraza disectada suave perteneciente a la Reserva Nacional Tambopata respectivamente.

Mamani (2012), estimo $607.30 \pm 273.50 \text{ tCO}_2$ -equi/ha, con los valores estimados de $334 - 451 \text{ t CO}_2$ -equi/ha para bosques primarios con paca en la región Madre de Dios, por WINROCK (2006a) y AIDER (2011)

La cantidad de carbono equivalente estimado del bosque de terraza alta "El Bosque"-Madre de Dios, es 452.16 t CO₂-equi/ha, el cual fue se aproxima a valores reportados para el Noroeste de la Amazonía y en America Central por Orrego & Del Valle (2001); Arreaga (2002); Herrera (2002); Sierra *et al.* (2007); FUNDACIÓN NATURA (2009); Pizzurno (2010); Arango & Camargo (2011) y Selaya (2011). También la cantidad de carbono equivalente estimado fue superior a los reportado para el Suroeste de la Amazonía: a nivel nacional por Freitas *et al.* (2006).

Sin embargo la cantidad de carbono equivalente estimado del bosque de terrazas alta "El Bosque"- Madre de Dios, fue inferior a los reportados y para el Este y Centro de la Amazonía por Nascimiento & Laurance (2002). También la cantidad de carbono equivalente estimado fue inferior a la reportada para el Suroeste de la Amazonía: a nivel nacional por Lujan & Chávez (2006); a nivel regional por Chambi (2001) y Cheirasco *et al.* (2009).

Una vez más se confirmaría la deducción, de que las diferencias de variación en las estimaciones de biomasa por consiguiente stock de carbono, y carbono equivalente,

según Sarmiento et al. (2005) se deberían a procedimientos metodológicos.

Es así que Chambi (2001); Lujan & Chávez (2006) para estimar la cantidad de carbono equivalente, primero utilizan un factor de expansión de volumen (FEV), segundo un factor de expansión de biomasa (FEB), tercero una ecuación general para estimar carbono y cuarto una ecuación general para estimar carbono equivalente. Al respecto WINROCK (2006).

3.1.3 Toneladas de carbono por hectárea por familia, género y especie.

Del inventario de árboles > 10 DAP (árboles y fustales):

Al realizarse el inventario de 22 parcelas de muestreo de 0.1 ha. (20*50m), del Fundo El Bosque de la Universidad Nacional Amazónica de Madre de Dios – UNAMAD; se registraron 998 individuos árboles y 169 individuos palmeras, 45 familias, 131 géneros, 125 especies arbóreas y 06 especies de palmeras, siendo la familia Moraceae con 79.09 tC/ha, el género Pseuldomedia con 31.09 tC/ha y la especie Micropholis *guyanensis* con 25.73 tC/ha; las que estimaron mayor cantidad de contenido de carbono. La familia Morácea registró 150 individuos con DAP de 10-113 cm., la familia Fabaceae registro 99 indiduos con DAP de 10-97.08 cm. A continuación se detalla el cuadro de contenido de carbono por las 10 familias más representativas al igual que género y especie; no necesariamente el género y especie que almacenan mayor cantidad de carbono deban pertenecer a una misma familia.

Las 20 especies como; Euterpe precatoria "Huasai" (98 individuos; 42.61 ind./ha), Iriartea Deltoidea "Pona" (58 individuos; 25.22 ind./ha). Arboles como: Tetragastris altissima "Isigo" (48 individuos; 20.87 ind./ha), Cecropia sciadophylla "Cetico colorado" (32 individuos; 13.91 ind./ha), Siparuna decipiens "Palo de agua" (32 individuos; 13.91 ind./ha), Brosimun lactescens "Tamamuri" (25 individuos; 10.87 ind./ha), Iryanthera juruensis "Cumalilla" (25 individuos; 10.87 ind./ha), Pseudolmedia laevigata "Yambito" (25 individuos; 10.87 ind./ha), Psedolmedia laevis "Chimicua" (25 individuos; 10.87 ind./ha), Meliosma herbertii "Aguacatillo" (24 individuos; 10.43 ind./ha), Pourouma minor "Uvilla" (24 individuos; 10.43 ind./ha), Vataireopsis sp "Amarillon" (23 individuos; 10.00 ind./ha), Pseodolmedia macrophylla "Pama" (22 individuos; 9.57 ind./ha), Iryanthera laevis "Cumala colorada" (21 individuos; 9.13 ind./ha), Neea spruceana "Palometa huayo" (21 individuos; 9.13 ind./ha), Tachigali

vasquezii "Inca pacae" (20 individuos; 8.70 ind./ha), Eschweilera coriácea "Misa blanca" (18 individuos; 7.83 ind./ha), Protium sagotianum "Copal" (17 individuos; 7.39 ind./ha), Tetragastris panamensis "Almesca" (17 individuos; 7.39 ind./ha), Aspidosperma parvifolium "Quillobordon" (15 individuos; 6.52 ind./ha).

Familia	tC/ha	Género	tC/ha	Especie	tC/ha
MORACEAE	79.09	Pseudolmedia	31.09	Micropholis guyanensis	25.73
FABACEAE	38.40	Micropholis	26.07	Vataireopsis sp	22.70
SAPOTACEAE	35.31	Tetragastris	25.98	Erisma uncinatum	19.87
LECYTHIDACEAE	34.07	Vataireopsis	22.70	Siparuna decipiens	17.05
BURSERACEAE	27.97	Iryanthera	19.94	Iryanthera juruensis	15.55
VOCHYSIACEAE	18.72	Clarisia	16.23	Pausandra trianae	13.63
URTICACEAE	13.42	Pausandra	13.63	Tetragastris altissima	13.46
LAURACEAE	10,65	Brosimum	11.23	Chrysophyllum sp	10.27
APOCYNACEAE	9.76	Aspidosperma	9.70	Galipea trifoliata	9.28
MALVACEAE	8.57	Galipea	9.28	Pourouma minor	8.58

Cuadro N° 13: Contenido de carbono de 10 familias, 10 géneros y 10 especies por hectárea. Fuente: Elaboración propia, 2013.

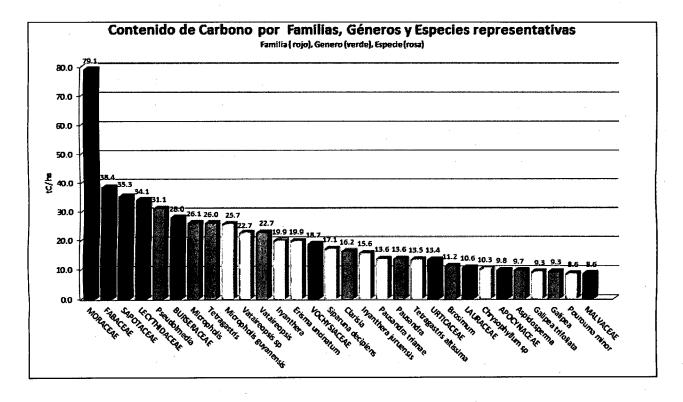


Figura 06. Estimación de biomasa de carbono por familia, género y especie de representativas. Fuente: Elaboración Propia, 2013.

3.1.3.1 Biomasa de árboles pequeños (Latizales).

Para los bosques primarios tropicales de Guatemala, Brasil y Ecuador, en la región de: Petén, Manaus y Cordillera del Cóndor. Arreaga (2002); Nascimiento & Laurance (2002) y La FUNDACIÓN NATURA (2009) estimaron valores en promedio de biomasa de árboles pequeños en 13.27 – 18.2 t/ha (latizal) para bosques con manejo forestal de la Reserva de Biosfera Maya, en 30.62 t/ha (arbolitos-plantas de regeneración) y Marqués 2000, en 33.9 – 61.1 t/ha (estrato arbustivo) respectivamente.

Por consiguiente en bosques primarios tropicales de Perú, Chambi (2001); Lujan & Chávez (2006) registraron valores en promedio de biomasa en 42.81 t/ha (arbustos y hierbas) para la región Madre de Dios y en 6.06 t/ha (sotobosque) para la región Junín respectivamente.

Mamani 2012, promedió 23.51 t/ha, el cual no se encuentra en el rango de biomasa registrados para los bosques primarios de Madre de Dios (Chambi, 2001).

Sin embargo la biomasa de árboles pequeños estimada del bosque de terraza alta "El Bosque", Madre de Dios, según la ecuación alométrica (Y = exp (-2.134 + 2.530*ln(DAP)), se obtuvo valores de 15.87 tC/ha como se observa en el cuadro N° 12 y la siguiente Figura 08, se asemeja a Arreaga (2002) y Lujan & Chávez (2006), en tanto es inferior a lo reportado por Chambi (2001); Nascimiento & Laurance (2002) y La FUNDACIÓN NATURA (2009).

Nº de Parcela	tC/ha
P00	1.24
P01	0.99
P02	0.07
P 04	0.67
P05	1.34
P06	1.06
P07	0.95
P08	1.94
P09	0.45
P10	1.86
P11	1.87
P12	0.33
P13	0.43
P14	0.02
P15	0.11
P16	0.60
P17	0.95

·	
P18	0.66
P19	0.35
P20	0.81
P21	0.14
TOTAL	15.87

Cuadro Nº 14: Valores de biomasa en las 22 parcelas según las ecuaciones alometricas para arboles pequeños.

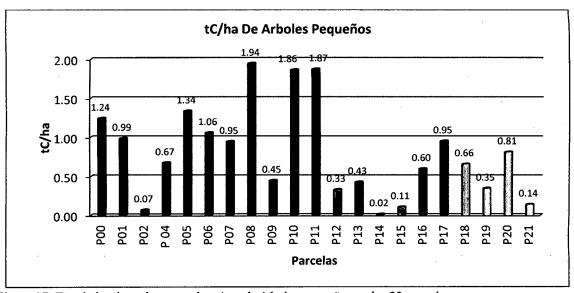


Figura 07. Toneladas de carbono por hectárea de árboles pequeños en las 22 parcelas Fuente: Elaboración Propia, 2013.

3.1.3.2 Biomasa de Herbácea (Brinzales), Materia Muerta, Hojarasca.

Se realizó la colecta de muestras de herbácea (Her), materia muerta (Mm) y hojarasca (Hoj), tomando en cuenta el peso total de toda la hojarasca de cada sub parcelas en sacos al igual que la materia muerta, se recolectaron restos de la vegetación en estado de descomposición como también aquellas que ya han perdido gran cantidad de agua, para la toma de la muestra de herbácea se tomó en cuenta entre ≤ 2 cm de DAP, para luego ser cortada en pequeñas porciones para su adecuado pesado por ser más grandes que las demás muestras, dejando el área limpia de toda materia vegetal, para luego ser registradas en una hoja de campo que se muestra en los anexos estas sub muestras fueron envueltas en bolsas de papel craf y codificadas como está registrado en la hoja de campo, como resultado se obtuvo un total de 330 sub muestras que fueron llevadas al laboratorio para su respectivo pesado y secado.

3.2 Procesamiento de datos de laboratorio

En el laboratorio las muestras de los componente de Herbácea (Her), materia muerta (Mm) y hojarasca (Hoj) son pesadas en una balanza electrónica (en gramos) cubiertas con papel craf por ser resistente al horno de secado, la herbácea por retener mayor cantidad de agua se secaron a 120°C, se pesaron de 3 a 6 veces hasta encontrar la estabilidad del peso seco (PS) en promedio de 16-18 horas, la materia muerta y la hojarasca por tener menos cantidad de agua que la herbácea se secaron a 80 °C en promedio tomo hasta 10 horas para encontrar la estabilidad del peso seco, luego de ser pesadas se registraron todos los datos obtenidos en un libro Excel, stock datos fueron procesados con las ecuaciones alométricas mencionadas antes para este tipo de biomasa; los datos registrado en la hoja de campo y los datos del peso húmedo antes de entrar al horno y el peso seco final se estimó en unidades de tC/ha con la siguientes fórmulas, como se muestra en el Cuadro N° 13.

3.2.1 Biomasa Herbácea (Her) (Brinzales).

En bosques primarios tropicales de Colombia, Guatemala, Colombia, Ecuador y Bolivia, en la región de: Antioquia, Petén, Antioquia, Cordillera del Cóndor y Pando. Orrego & Del Valle (2001); Arreaga (2002); Herrera (2002); La FUNDACIÓN NATURA (2009) y Selaya (2011) estimaron valores de biomasa en 0.604 t/ha (herbácea), en 0.3 – 1.07 t/ha (brinzal) para bosques con manejo forestal de la Reserva de Biosfera Maya, en 0.647 t/ha (herbácea y leñosa pequeña) para el área de influencia de la Central Hidroeléctrica Porce II y Mamani 2012, en 1 – 2.6 t/ha (estrato herbáceo) y en 0.495 t/ha (herbácea) respectivamente.

Cartel y Cairampoma (2012), estimaron valores para bosque primarios de terraza alta de Madre de Dios valores de 8.12 tC/ha siendo superior a los datos estimados de Chacón, Lebranc y Russo (2007) de 0.6 ± 0.1 tC/ha para un bosque secundario de Costa Rica.

Nº de Parcelas	Herbácea (tC/ha)
1	0.112
2	0.064
3	0.321
4	0.060
5	0.116
. 6	0.113
7	0.134
8	0.083

9	0.125
10	0.112
11	0.127
12	0.112
13	0.258
14	0.110
15	0.111
16	0.085
17	0.278
18	0.131
19	0.093
20	0.068
21	0.146
22	0.228
TOTAL	3.0075
Máximo	0.638
Mínimo	0.294
PROMEDIO	0.136

Cuadro N°15: Estimación de biomasa de herbácea (Her) en t/ha y distribución dentro de las 22 parcelas de muestreo.

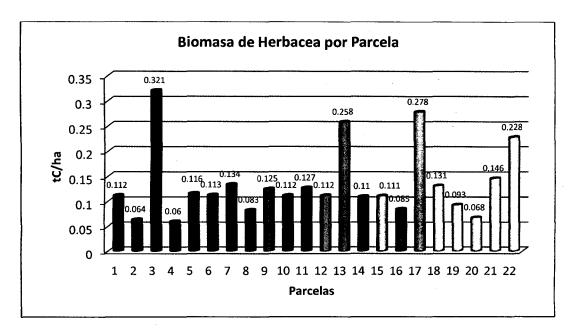


Figura 08. Estimación de biomasa de herbácea (Her) en t/ha y distribución dentro de las 22 parcelas de muestreo.

Fuente: Elaboración Propia, 2013.

Sin embargo la biomasa herbácea estimada del bosque de terraza alta del Fundo "El Bosque", Madre de Dios, fue de 3.0075 tC/ha superior a las reportadas por Orrego & Del Valle (2001); Arreaga (2002); Herrera (2002), Selaya (2011) y Chacón, Lebranc y Russo (2007). Estimando valores más altos en la parcela de muestro n°3 y mínimos en la parcela de muestro n°4.

3.2.2 Biomasa Hojarasca (Hoj) y Biomasa Materia Muerta (Mm).

La biomasa de hojarasca (Hoj) fue colectada en sacos para su respectivo pesado, tomando solo una pequeña muestra para el laboratorio parra el secado por cada sub parcela, estimo valores de biomasa mínimos de 0.146 t/ha dentro de las parcelas 12 y 13, valores de biomasa máximos de 0.384 t/ha dentro de la parcela 22, resultando en promedio 0.23 t/ha como se observa en el cuadro nº 14 y la figura 10.

N° de Parcelas	Hojarasca (tC/ha)
1	0.229
2	0.218
3	0.148
4	0.193
5	0.238
6	0.325
7	0.244
8	0.198
9	0.196
10	0.322
11	0.204
12	0.146
13	0.146
14	0.253
15	0.241
16	0.265
17	0.181
18	0.260
19	0.251
20	0.274
21	0.195
22	0.384
TOTAL	5.111
Máximo	0.384
Mínimo	0.146
PROMEDIO	0.232

Cuadro N°16: Estimación de biomasa de hojarasca (Hoj) en t/ha y distribución dentro de las 22 parcelas de muestreo.

Fuente: Elaboración Propia, 2013.

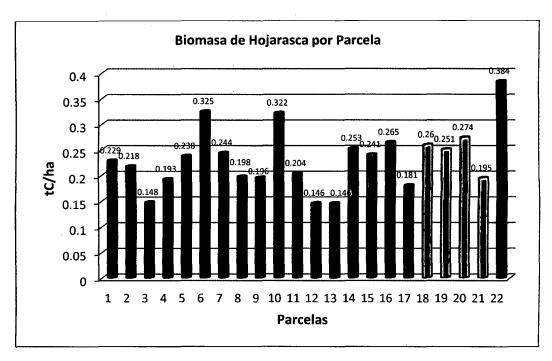


Figura 09. Estimación de biomasa de hojarasca (Hoj) en t/ha y distribución dentro de las 22 parcelas de muestreo.

La biomasa de materia muerta (Mm) fue colectada en sacos para su respectivo pesado, obteniendo una muestra pequeña para el laboratorio, estimo valores de biomasa mínimos de 0.073 tC/ha dentro de la parcela 11 y valores de biomasa máximos de 0.522 tC/ha dentro de la parcela 21, resultando en promedio 0.198 tC/ha como se observa en el cuadro nº 15 y la figura 11.

Nº de Parcelas	Materia Muerta (T/ha)
1 .	0.099
2	0.317
3	0.133
4	0.105
5	0.374
6	0.261
7	0.124
8	0.095
9	0.150
10	0.096
11	0.073
12	0.263
13	0.216
14	0.128
15	0.350
16	0.093
17	0.186
18	0.022
19	0.188
20	0.184

21	0.522
22	0.171
TOTAL	4.148
Máximo	0.522
Mínimo	0.073
PROMEDIO	0.198

Cuadro N° 17: Estimación de biomasa de materia muerta (Mm) en t/ha y distribución dentro de las 22 parcelas de muestreo.

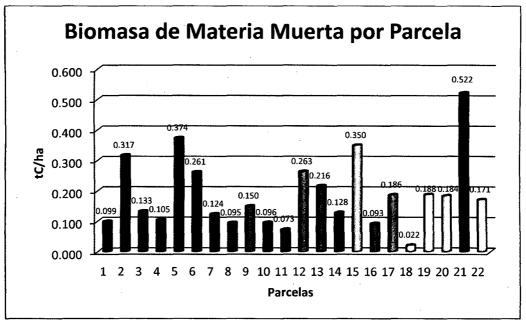


Figura 10. Estimación de biomasa de materia muerta (Mm) en t/ha y distribución dentro de las 22 parcelas de muestreo.

Fuente: Elaboración Propia, 2013.

Según la FAO (2010) estimó la biomasa, la madera muerta y las existencias de carbono utilizando los promedios subregionales por hectárea y multiplicándolos por el área de bosque en el año correspondiente. Indicando que en 2010 que la madera muerta de los bosques del mundo alcanza unas 67 Gt de materia seca, o 16.6 tC/ha. El descenso en las existencias totales de biomasa se debe principalmente a la pérdida de área de bosque.

En 2010, la madera muerta y la hojarasca almacenan un total de 72 000 millones de toneladas de carbono (M t C), o 17.8 tC/ha, lo que es un volumen ligeramente superior al registrado en FRA (2005). Los bosques tropicales son el escenario de un número significativo de esfuerzos internacionales de investigación, demostrando que los valores más elevados en contenido de carbono y biomasa aérea están en bosques amazónicos (Chao et al 2004, Overman et al. 1994; Ordóñes, 1999; Dauber et al. 2000; Arreaga, 2002; Baker et al. (2004 a,b); Chave et al. (2001; 2005; 2006 a,b); Mostacedo

et al. 2006; Phillips et al. (1998; 2002a; 2004; 2009); Malhi et al. 2009 citado por Ureta, 2009).

Por tanto los valores obtenidos de hojarasca y materia muerta es 9.2638 tC/ha según la tabla 16; se aproximan al rango de datos reportados por FAO 2010, Overman et al. 1994; Ordóñes, 1999; Dauber et al. 2000; Arreaga, 2002; Baker et al. (2004 a,b); Chave et al. (2001; 2005; 2006 a,b); Mostacedo et al. 2006; Phillips et al. (1998; 2002a; 2004; 2009); Malhi et al. 2009 citado por Ureta, 2009).

Tipo de Muestra	tC/ha
Herbácea (Herb) 2-10cm.	3.0075
Hojarasca (Hoj)	5.1116
Materia Muerta (mm)	4.1478
Árboles de ≥2-10 cm.	15.866
Árboles y Palmeras	271.05

Cuadro N°18: Toneladas de carbono (tC/ha) por Tipo de muestra, carbono total de las sub muestras y arboles grandes.

Fuente: Elaboración Propia, 2013.

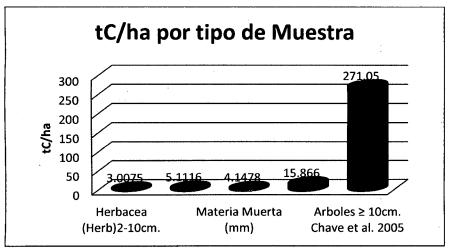


Figura 11. Toneladas de carbono (tC/ha) por Tipo de sub muestra y árboles. Fuente: Elaboración Propia, 2013.

CONCLUSIONES

- ➤ Los valores estimados con la ecuación alométricas de Chave del 2005(b); considera parámetros de densidad, altura y DAP de los árboles, a diferencia de las demás ecuaciones alométricas de Chambers, et al 2001; Baker et al, 2004; Chave et al, 2005 (a) y Brown et al 1989 que utilizan parámetros de DAP2, DAP3, altura estimada, generar una sobre estimación en la cantidad de carbono cuantificado. Nuestro carbono almacenado estimado es de 271.05 tC/ha, encontrándose dentro de rangos promedios estimados por diversos autores.
- ➤ Los árboles fijan dióxido de carbono de la atmósfera a través de la fotosíntesis y lo almacenan en su biomasa, al reducir la extensión de bosques, se reduce la capacidad para absorber las emisiones globales de los gases de efecto invernadero, que cada año aumentan; el carbono equivalente del bosque de terraza alta estimó valores de 452.16 tCO2/equiv. y el CO2 que evitaríamos emitir a la atmosfera es de 193632.788 tCO2/equiv./ha, reduciendo la tasa de deforestación se minimizaría la tasa de cambio climático a travez de iniciativas REDD++.
- ➤ Para el contenido de carbono por familia, género y especie, se estimo que la familia Moraceae presento 79.09 tC/ha, el género Pseuldomedia 31.09 tC/ha y la especie Micropholis guyanensis 25.73 tC/ha; no son directamente proporcional a la cantidad de individuos, debido al DAP, altura y ecuación alométrica para el caso de la palmera.
- ➤ La biomasa estimada del componente árboles pequeños del bosque de terraza alta estimo 15.86 t/ha. encontrándose dentro del rango calculado por los diferentes autores.
- ➤ La biomasa estimada del componente herbáceo del bosque de terraza alta estimo valores 3.007 tC/ha. se encuentra dentro del rango calculado por los diferentes autores.
- ➤ La biomasa estimada del componente hojarasca del bosque de terraza alta estimó valores de 5.11 tC/ha, la biomasa estimada del componente de materia muerta

presento un valor 4.147 t/Cha. Confirmándose la deducción de diferencias de variación en las estimaciones de biomasa, según Sarmiento et al. (2005) se deben procedimientos metodológicos, por cuanto Chambi (2001), primero utiliza un factor de expansión de volumen (FEV) y segundo un factor de expansión de biomasa (FEB). Considerando evaluar (arbustos y hierbas) así como (arbolitos y plantas de regeneración) respectivamente dejando de lado el evaluar únicamente árboles grandes o arbustos.

RECOMENDACIONES

- Es importante mantener la homogeneidad en la parcela, por lo que la forma del estrato geomorfológico es una consideración importante. Las parcelas cuadradas son más simples de levantar que las parcelas circulares y tienen menos periferia y área radial que las parcelas rectangulares y así se tiene menos problemas con decisiones concernientes a la presencia de árboles dentro o fuera de los limites de la parcela. Las parcelas rectangulares serán menos perturbadas por líneas de cortes dentro de la parcela y las dinámicas que se registren estarán menos influenciadas por los eventos de caída de un solo árbol.
- El cambio climático es una de las principales amenazas para el desarrollo sostenible y constituye un importante reto mundial que está causando impactos ambientales en la economía global, la salud, la biodiversidad, el medio ambiente y el bienestar humano. Este cambio climático se produce por la creciente concentración de gases de efecto invernadero (GEI) en la atmósfera, entre los que se encuentra el CO2. Para luchar contra este fenómeno, se propone esta iniciativa de estudio que debe permitir a las autoridades de la universidad definir lineamientos técnicos para formular un plan de manejo, que permita valorar los recursos ecosistémicos e identificar proyectos de educación ambiental, ecoturismo y otros afines de proteger y conservar nuestros recursos del bosque.

BIBLIOGRAFIA

Bibliografía textual

- ✓ Alarcón, Gabriel y Zevallos, Percy Amilcar. Estructura y composición florística de un bosque de terraza baja en Tambopata, Madre de Dios. 2011. Revista Científica Biodiversidad Amazónica. Octubre 2011 Año 3 Vol. 3. ISSN 2075-8081.
- ✓ Aldana- Pereira Dr. C. Edilio, 2011. Coeficientes de variación, eficiencia relativa (er) e intensidad de muestreo para diferentes formas y tamaños de unidades de Muestreo en bosques mixtos naturales.
- ✓ Anderson, Liana O. 2012. Biome-Scale Forest Properties in Amazonia Based on Field and Satellite Observations. [On line] Journal Remote Sens. 2012, 4, 1245-1271; doi:10.3390/rs4051245 < http://www.mdpi.com/journal/remotesensing>
- ✓ Araujo et al 2011. Necromasa de los bosques de Madre de Dios, Perú; una comparación entre bosques de tierra firme y de bajíos. Lima-Perú. UNMSM. 03 p.
- ✓ Araujo M. et al. 2006. Inventario y monitoreo de carbono. Capítulo4. Manual de campo para el inventario y monitoreo de la productividad de la biomasa y/o carbono en bosques tropicales. Santa Cruz, Bolivia.28 p. [citado septiembre del 2011]
- ✓ Asner, g. P., g. V. N. Powell, j. Mascaro, d. E. Knapp, j. K. Clark, j. Jacobson, t. Kennedy-bowdoin, a. Balaji, g. Paez-acosta, e. Victoria, l. Secada, m. Valqui, and r. F. HUGHES. 2010. High- resolution forest carbon stocks and emissions in the Amazon. [On line] Proceedings of the National Academy of Sciences. (2010) 107(38):16738-16742.
- ✓ Asociación para la investigación y el desarrollo integral (aider). Recavarren, p; delgado, m; sánchez, c y angulo, M. 2011. Estimación del Carbono Almacenado en la Biomasa de los Bosques de la Reserva Nacional Tambopata y el Parque Nacional Bahuaja-Sonene Ámbito de la región Madre de Dios. Madre de Dios, Perú. 47 p.
- ✓ Baker T.R., O.L. Phillips, Y. Malhi, et al. 2004. Variation in Wood density determines spatial patterns in Amazonian forest biomass. Global Change Biol. 10: 545-562

- ✓ Brown,S. y Lugo, A.E. 1989. Biomass estimation methods for tropical forest whitapplications to forest inventory data. Forest science35 (4): 381 902.
- ✓ Brown, S. y Lugo 1993. Tropical secondary forest. Journal of tropical ecology.
 32p.
- ✓ Brown, 1996. Management of forestry for mitigation of greenhouse gas emissions, in working group II, second assessment report, intergovernmental panel onclimate change, Cambridge university press, Cambridge.
- ✓ Brown, S. 1997. Estimating biomasa and biomasa change of tropical forets.
- ✓ Camacho Marlen, 2000. Turrialba, Costa. Rica. Parcelas permanentes de muestreo en bosque natural tropical Guía para el establecimiento y medición.
- ✓ Castro Walter, Escobedo Roger *et Al.* 2009. Zonificación Ecológica Económica de Madre de Dios. Gobierno Regional de Madre de Dios. 21, 31, 14,37,41 p.
- ✓ Chacón P, Lebranc A. y Russo O. 2007. Fijación de carbono en un bosque secundario de la región tropical húmeda de Costa Rica. 1, 43-48 P.
- ✓ Chambers J.Q., J. dos Santos, R.J. Ribeiro & N. Higuchi. 2001. Tree damage, allometric relationships, and above-ground net primary production in central Amazon forest. For. Ecol. Manag. 152: 73-84
- ✓ Chambi Condori, Pedro Pablo. 2001. Valoración Económica de secuestro de carbono mediante simulación aplicada a la Zona boscosa del Rio Inambari y Madre de Dios. Simposio Internacional Medición y Monitoreo de la Captura de Carbono en Ecosistemas forestales (18 al 20 de Octubre del 2001. Valdivia Chile). 20 p.
- Chave, J., C. Andalo, S. Brown, M.A. Cairns, J.Q. Chambers, D. Eamus, H. Folster, F. Fromard, N. Higuchi, T. Kira, J.P. Lescure, B.W. Nelson, H. Ogawa, H. Puig, B. Riera, and T. Yamakura. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145(1):87-99.

- ✓ Cheirasco R. et al. 2009, Madre de Dios Amazon REDD Project. Maderacre y Maderyja. 341 p. [On líne] < http://www.gruporeddperu.net> [citado 10 de agosto 2013]
- ✓ Climate Change 2001: Working Group I: The Scientific Basis. IPCC. 10-20 P.
- ✓ Cruzado Blanco Luis Alberto, Flores Negrón César F., 2010. Protocolo para la Determinación del Carbono en el Suelo y en la Biomasa Vegetal Aérea de los Bosques de la Concesión paran Conservación Alto Huayabamba: Versión 1.0. AMAZÓNICOS POR LA AMAZONÍA AMPA Moyobamba, San Martín.
- ✓ Dixon, R.K., S. Brown, R.A. Houghton, A.M. Solomon, M.C. Trexler, and J. Wisniewski. 1994. Carbon pools and flux of global forest ecosystems Science 263(5144):185-190.
- ✓ Ecosystem Marketplace, 2007. New Carbon Finance, World Bank,
- ✓ Frenzel, Louis L. (mayo de 2003). Sistemas electrónicos de comunicaciones (Tercera reimpresión edición). México D.F.: Alfaomega. pp. 21 a 23
- ✓ Galarza Elsa y La Serna Karlos CIUP, 2005. Economía y Sociedad 56, CIES, pp 34-36.
- ✓ Graedel, T.E. &Crutzen, P.J. (1993) Atmospheric change. An Earth System perspective. Freeman, N. York.
- ✓ Herbert T, Vonada R, Jenkins M., Bayon R, 2010. Fondos ambientales y pagos por servicios ambientales, Red de Fondos Ambientales de Latinoamérica y el Caribe RedLAC, 6 p.
- ✓ Larrea Aguinaga, Giuliana Cecilia. 2007. Determinación de las reservas de carbono en la biomasa aérea de combinaciones agroforestales de Theobroma cacao L. Tesis (Ingeniería Ambiental). Lima, Perú. Universidad Nacional Agraria La Molina, Facultad de Ciencias, Departamento de Ingeniería Ambiental. 147 p.

- ✓ Lapeyre T., Alegre J. y Arévalo L. 2004. determinación de las reservas de carbono de la biomasa aérea, en diferentes sistemas de uso de la tierra en San Martín, Perú. 1, 39-42 p.
- ✓ Martel y Cairampoma. 2012. Cuantificación del carbono almacenado en formaciones vegetales amazónicas en "CICRA", Madre de Dios (Perú).1, 58-63 p.
- ✓ Márquez, 2000. Comunicación personal. Valores de carbono almacenado para los bosques latifoliado y mixto del área del Lago de Atitlán, Sololá, Guatemala. Fundación Solar. Guatemala.
- ✓ Medina C. 2004. Cuantificación de la captura y almacenamiento de carbono ensistemas de café con sombra (*CoffeaarabicaL*), hacienda Santa Maura, Jinotega, Nicaragua. Tesis. Managua, Nicaragua, UNI.108 p.
- ✓ Medina C. 2006. Indicadores de impactos de los sistemas forestales y agroforestales. POSAF II p 1, 28 p.
- ✓ Organización de las Naciones Unidas para la Agricultura y la Alimentación FAO. 2010. Evaluación de los recursos forestales mundiales 2010: Informe principal. Estudio FAO Montes n. ° 163. Roma. 15-18 p.
- ✓ Pérez, E. et al., 2005. Potencial de plantación y fijación de carbono. Tomo II.MAGFOR PROFOR. 15, 16,18, 165 p.
- ✓ Panel intergubernamental de expertos sobre el cambio climático. IPCC, 2000: Special Report on Emission Scenarios. A Special Report of Working Group III of the Intergovernmental Panel on Climate Change [Nakićenović, N., et al. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 599 p.

- ✓ Panel intergubernamental de expertos sobre el cambio climático. IPCC, 2001 b. Climate chance, 2001: Mitigation. A report of work group III of the intergovernmental panel on climate change. Sumary for policymakers.
- ✓ Panel intergubernamental de expertos sobre el cambio climático. IPCC, 1996. Report of the twelfth session of the intergovernmental panel onclimate change. Reference manual and workbook of the IPCC revised guidelines for national greenhouse gas inventories. México 11- 13 p.
- ✓ Rügnitz, M. T.; Chacón, M. L.; Porro R. Guía para la Determinación de Carbono en Pequeñas Propiedades Rurales -- 1. ed. -- Lima, Perú.: Centro Mundial Agroflorestal (ICRAF) / Consórcio Iniciativa Amazônica (IA). 2009. 9, 10, 55 p.
- ✓ Saatchi, S; Harris, N; Brown, S; Lefsky, M; Mitchard, E; Salas, W; Zutta, B; Buermann, W; Lewis, S; Hagen, S; Petrova, S; White, L; Silman, M Y Morel, A. 2011. Benchmark map of forest carbon stocks in tropical regions across three continents.
- ✓ Salazar J. 2004. Pagos por servicios ambientales PSA. Oportunidades para la región Loreto. INRENA. [On líne] < http://es.slideshare.net/elizabeth100/pago-por-servicios-ambientales> [Citado 05 de Setiembre del 2013]
- ✓ Segura, M. 1999. Valoración del servicio de fijación y almacenamiento de carbono en bosques privados en el área de conservación cordillera volcánica central de Costa Rica. CATIE. Turrialba Costa Rica. 132 p.
- ✓ Selaya, Galia. 2011. Estimación de Carbono en Parcelas Permanentes de Monitoreo en un Bosque Antrópico de Pando. Revista Amazonia Viva, abrilmayo, número 01, Consorcio Madre de Dios Pando. IICA, USAID. Madre de Dios, Perú. pp 18-20.
- ✓ Sierra, C.A; del Valle, J.I; Orrego, S.A; Moreno, F.H; Harmon, M.E; Zapata, M; Colorado, G.J; Herrera, M.A; Lara, W; Restrepo, D.E; Berrouet, L.M; Loaiza, L.M Y Benjumea, J.F. 2007. Total carbon stocks in a tropical forest landscape of the Porce region, Colombia. [On líne] Journal Forest Ecology and Management 243 (2007) 299–309 http://www.elsevier.com/locate/foreco [citado 16 de octubre 2009]

- ✓ Vallenas Quispe, J. C y Parrillo Mancilla, H. V. 2006. Determinación del secuestro de carbono de Shihuahuaco, Quinilla y Estoraque en predios agrícolas en Tahuamanu. Tesis (Ingeniería Forestal). Madre de Dios, Perú. Universidad Nacional de San Antonio Abad del Cusco, Facultad de Ciencias Forestales y Medio Ambiente. 78 p.
- ✓ Walker, S; Pearson, T; Harris, N; Macdicken, K; Brown, S. 2007. Procedimientos operativos estándares para la medición de carbono terrestre. Winrock internacional. Virginia, USA. 52 p
- ✓ Winrock International (WI). 2006. Terrestrial Carbon Storage in the Osa Peninsula, Punta Arenas, Costa Rica. 27 p. [On líne] < http://www.winrock.org/ecosystems/publications.asp?BU=9086> [citado 10 de agosto 2013]
- ✓ Winrock International (WI). 2006. Carbon Storage in the Los Amigos Conservation Concession, Madre de Dios, Perú. 31 p. [On líne] < http://www.winrock.org/ecosystems/publications.asp?BU=9086> [citado 10 de agosto 2013]
- ✓ Woods Hole Research Center (WHRC). 2012. Carbon storage in tropical vegetation: New map to help developing nations track deforestation, report on emissions. [On líne] Journal PHYSorg < http://phys.org/news/2012-01-carbon-storage-tropical-vegetation-nations.html.> [citado 25 de agosto 2013]
- ✓ Zamora, J. y Quiroz. 2000. Terminología forestal de uso común en Centro América. Manejo forestal tropical. CATIE. Unidad de manejo de bosques naturales, N14. Junio. ISNN. 1409 3456.

ANEXOS

Anexo N°01.Panel de fotos.

Anexo N°02. Formato para la toma de datos en campo

Anexo N°03.Formato para el inventario de árboles ≥10 cm. DAP

Anexo N°03. Cuadro de inventario y estimación de carbono.

Anexo Nº 01. Panel de Fotos

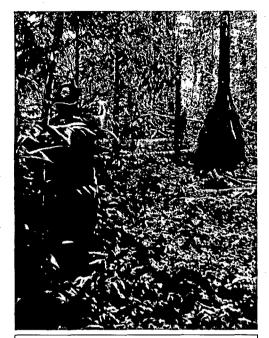


Foto N°01: Abriendo las parcelas para inventario de árboles.

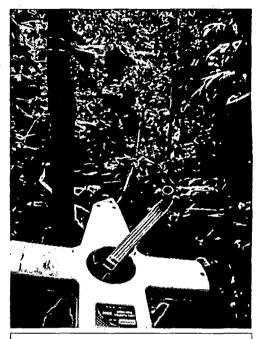


Foto N°02: Midiendo las parcelas para inventario de árboles.

Foto N°03: Realizando el reconocimiento de especies en las parcelas de biomasa aérea.

Foto N° 04: Realizando el inventario de especies en las parcelas de biomasa herbácea.

Foto Nº 05: Toma de datos de paso de las subparcelas de biomasa herbácea y hojarasca.

Foto N° 06: Colectando las muestras de hojarasca en las sub-parcelas.

Foto N° 07: Recogiendo las muestras de materia muerta.

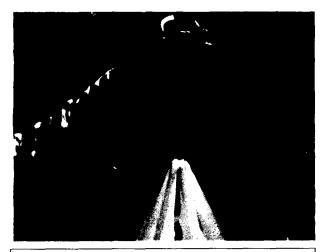


Foto N° 08: Realizando el peso de cada una de las muestras.

Foto N° 09: Sub-Parcela número 13, vegetación no muy densa, presencia de bastantes claros.

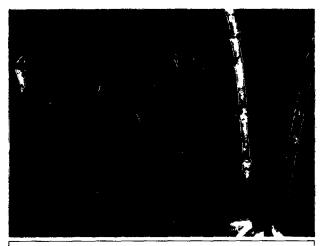


Foto Nº 10: Realizando la colección de materia herbácea para después ser pesada.

Foto N° 11: Realizando la colección de materia herbácea y hojarasca en sacos.

Foto Nº 12: Realizando la colección de materia herbácea y hojarasca en sacos.

Foto N° 13: Realizando el pesado las muestras de herbáceas y leños.

Foto N° 14: Colectando las muestras de la subparcela 20.

Foto N° 15: Muestras pesadas en sus respectivas bolsas para después ser secadas.

Foto N° 16: Pesado de muestras frescas en laboratorio.

Foto N° 17: Muestras secas y registradas.

Foto Nº 18: Balanza electrónica

Foto N° 19: Pesado de las muestras

Foto Nº 20: Pesado de las muestras en la balanza electrónica

Foto N° 21: Pesado y verificación de cada peso de muestra

Foto N° 22: Registrado de cada muestra pesada

Foto N° 22: Pesado antes y después de sacar al horno de secado

Anexo Nº02. Formato para la toma de datos en campo

FECHA:

					Muestreo d	Herbácea y						
			DAP (2cm< >5cm)	DAP (Troncos caídos)	materia muerta							
No. Parcela (20*50 m.)	No. Parcela (4*4 m.)	DAP. (10>5cm)			peso de hojarasca (gr)	peso de herbácea (gr)	peso de materia muerta(gr)					
	PM01											
	PM02											
	PM03											
	PM04	·										
	PM05											
	PM01											
	PM02											
	PM03											
	PM04											
	PM05											
	PM01				<u></u>							
	PM02											
	PM03											
	PM04											
	PM05					·						
	PM01											
	PM02											
	PM03											
	PM04											
	PM05											
	PM01											
	PM02		 									
	PM03						·					
	PM04		· · · · · · · · · · · · · · · · · · ·	<u> </u>								
	PM05				·							

Anexo N°03. Formato para el inventario de árboles ≥10 cm. DAP

N	Parcelas	Arb. x parcela	Familia		Especie	Altura total	DAP
		·		·			
							
		<u> </u>					<u> </u>
					<u> </u>		· · · · · · · · · · · · · · · · · · ·
					-		

		·					
				!			
İ							

 $Anexo\ N^o03.\ Cuadro\ de\ inventario\ y\ estimación\ de\ carbono\ T/ha.\ de\ árboles\ grandes\ y\ palmeras$

Parc elas	Arb. x parc ela	Familia	Genero	Especie	D escogi da	DAP	нт	Biomasa : DAP	Biomasa : DAP, ρ	Biomasa : DAP, ρ	Bioma sa: DAP, ρ, H	Biomasa : DAP, p, H Brown
P-0	1	ARECACEAE	lriartea	Iriartea deltoidea	0.28	20.6	16	327	134	125	95	117.30
P-0	2	ARECACEAE	Euterpe	Euterpe precatoria	0.41	15.9	9	164	100	93	47	60.10
P-0	3	SALICACEAE	Casearia	Casearia pitumba	0.73	23.9	10	479	522	487	212	251.15
P-0	4	FABACEAE	Tachigali	Tachigali vasquezii	0.56	19.6	10	287	239	222	109	133.84
P-0	5	BURSERACEAE	Protium	Protium sagotianum	0.56	12.1	4	78	65	62	17	22.24
P-0	6	SAPOTACEAE	Chrysophyllum	Chrysophyllum sp	0.76	29.2	16	797	904	857	529	599.72
P-0	7	RUTACEAE	Galipea	Galipea trifoliata	1.00	10.4	1	53	78	75	6	7.81
P-0	8	FABACEAE	Tachigali	Tachigali vasquezii	0.56	28.3	15	738	616	581	343	396.82
P-0	9	MORACEAE	Pseudolmedia	Pseudolmedia laevigata	0.63	20.4	12	317	298	277	160	191.67
P-0	10	MORACEAE	Helicostylis	Helicostylis tomentosa	0.63	29.9	10	845	790	751	286	333.83
P-0	11	SIPARUNACEAE	Siparuna	Siparuna sp	0.66	16.6	7	183	179	167	64	80.44
P-0	12	MORACEAE	Pseudolmedia	Pseudolmedia laevigata	0.63	52.2	20	2928	2749	###	###	1870.97
P-0	13	ARECACEAE	Euterpe	Euterpe precatoria	0.41	16.6	15	186	113	105	86	106.50
P-0	14	MORACEAE	Pseudolmedia	Pseudolmedia laevis	0.62	38.0	18	1486	1372	###	819	909.94
P-0	15	BURSERACEAE	Protium	Protium sagotianum	0.56	23.9	10	479	399	372	162	194.28
P-0	16	ARECACEAE	Iriartea	Iriartea deltoidea	0.28	21.3	12	358	147	137	77	95.28
P-0	17	MORACEAE	Pseudolmedia	Pseudolmedia laevis	0.62	27.1	9	658	608	571	208	246.21
P-0	18	FABACEAE	Tachigali	Tachigali poeppigiana	0.56	25.6	15	572	477	447	280	327.00
P-0	19	BURSERACEAE	Tetragastris	Tetragastris panamensis	0.73	11.8	4	73	80	76	21	27.41
P-0	20	RUBIACEAE	Alseis	Alseis peruviana	0.65	24.5	7	513	497	464	139	168.35
P-0	21	BURSERACEAE	Protium	Protium amazonicum	0.60	15.2	8	146	130	122	57	71.33
P-0	22	ARECACEAE	Iriartea	Iriartea deltoidea	0.28	26.0	14	596	245	230	133	161.06
P-0	23	BURSERACEAE	Protium	Protium aracouchini	0.49	11.1	4	63	46	44	12	16.82

P-0	_24	FABACEAE	Tachigali	Tachigali vasquezii	0.70	19.2	14	270	281	261	183	217.94
P-0	25	FABACEAE	Enterolobium	Enterolobium schomburgkii	0.72	17.8	9	223	239	223	105	128.49
P-0	26	EBENACEAE	Diospyros	Diospyros capreifolia	0.73	30.8	15	905	986	942	529	599.69
P-0	27	BURSERACEAE	Protium	Protium sagotianum	0.56	19.1	5	268	223	207	52	65.65
P-0	28	ANNONACEAE	Xylopia	Xylopia sp	0.58	10.2	1	49	42	40	3	4.43
P-0	29	SIPARUNACEAE	Siparuna	Siparuna cuspidata	0.66	12.4	3	84	82	78	15	20.72
P-0	30	MYRISTICACEAE	Iryanthera	Iryanthera juruensis	0.63	12.3	3	82	78	74	15	19.77
P-0	31	LAURACEAE	Ocotea	Ocotea bofo	0.53	18.1	5	234	183	170	44	56.24
P-0	32	MORACEAE	Pseudolmedia	Pseudolmedia macrophylla	0.66	12.2	3	79	78	74	15	20.07
P-0	33	FABACEAE	Inga	Inga alba	0.59	41.9	18	1851	1619	###	945	1042.26
P-0	34	BURSERACEAE	Tetragastris	Tetragastris altissima	0.71	21.7	12	375	396	368	204	242.08
P-0	35	LAURACEAE	Nectandra	Nectandra globosa	0.39	21.9	10	382	222	207	95	116.98
P-0	36	BURSERACEAE	Tetragastris	Tetragastris panamensis	0.73	22.3	11	402	439	408	204	242.06
P-0	37	ARECACEAE	Euterpe	Euterpe precatoria	0.41	17.9	14	225	136	127	93	114.37
P-0	38	ARECACEAE	Euterpe	Euterpe precatoria	0.41	15.9	11	163	99	92	57	72.21
P-0	39	BURSERACEAE	Protium	Protium amazonicum	0.60	12.1	7	78	70	_66	31	40.58
P-0	40	ANNONACEAE	Annona	Annona ambotay	0.44	13.1	4	97	64	61	16	20.82
P-0	41	BURSERACEAE	Protium	Protium sagotianum	0.56	19.1	5	268	223	207	52	65.65
P-0	42	NYCTAGINACEAE	Neea	Neea spruceana	0.68	10.2	1	49	50	47	4_	5.15
P-0	43	LAURACEAE	Ocotea	Ocotea sp1	0.53	10.2	3	49	39	37	8_	11.52
P-0	44	MALVACEAE	Apeiba	Apeiba membranacea	0.28	40.8	15	1746	719	731	351	406.30
P-0	45	OLACACEAE	Heisteria	Heisteria ovata	0.54	13.6	12	108	87	82	61	77.04
P-0	46	SAPOTACEAE	Chrysophyllum	Chrysophyllum sp	0.76	81.8	22	6366	7218	###	###	5768.72
P-0	47	FABACEAE	Vataireopsis	Vataireopsis sp	0.64	12.2	3	81	77	73	15	19.73
P-0	48	MORACEAE	Maquira	Maquira calophylla	0.62	10.9	1	59	55	52	4	5.38
P-0	49	BURSERACEAE	Protium	Protium aracouchini	0.49	13.7	4	109	80	75	19	24.89
P-0	50	SIPARUNACEAE	Siparuna	Siparuna cuspidata	0.66	11.5	4	68	66	63	18	23.40
P-0	51	URTICACEAE	Pourouma	Pourouma minor	0.44	12.7	3	90	60	56	11	15.03

P-0	52	SIPARUNACEAE	Siparuna	Siparuna decipiens	0.64	10.5	3	53	51	49	11	14.76
P-0	53	ARECACEAE	Iriartea	Iriartea deltoidea	0.28	19.1	8	268	110	102	41	52.49
P-0	54	BURSERACEAE	Tetragastris	Tetragastris altissima	0.71	19.0	5	263	278	258	65	81.36
P-0	55	ARECACEAE	Euterpe	Euterpe precatoria	0.41	20.8	12	333	202	188	107	131.04
P-0	56	MONIMIACEAE	Mollinedia	Mollinedia sp	0.67	14.5	3	128	127	119	21	28.32
P-0	57	BURSERACEAE	Tetragastris	Tetragastris panamensis	0.73	15.0	4	139	152	142	33	43.23
P-0	58	SALICACEAE	Casearia	Casearia pitumba	0.73	14.5	3	128	139	130	23	30.81
P-0	59	ARECACEAE	Euterpe	Euterpe precatoria	0.41	20.9	14	339	205	191	126	153.54
P-0	60	FABACEAE	Vataireopsis	Vataireopsis sp	0.64	10.2	3	49	47	45	10	13.94
P-1	1	URTICACEAE	Cecropia	Cecropia sciadophylla	0.39	27.6	13	694	401	377	196	232.62
P-1	2	BURSERACEAE	Tetragastris	Tetragastris altissima	0.71	50.1	15	2692	2844	###	###	1470.21
P-1	3	MELIACEAE	Guarea	Guarea macrophylla	0.65	11.4	3	67	64	61	13	17.35
P-1	4	ARECACEAE	Iriartea	Iriartea deltoidea	0.28	30.2	15	867	356	339	192	229.14
P-1	5	FABACEAE	Tachigali	Tachigali vasquezii	0.56	10.2	1	49	41	39	3	4.29
P-1	6	MYRISTICACEAE	Iryanthera	Iryanthera laevis	0.62	17.8	1	221	203	188	10	13.56
P-1	7	FABACEAE	Vataireopsis	Vataireopsis sp	0.64	18.5	1	245	234	218	11	15.20
P-1	8	SALICACEAE	Casearia	Casearia pitumba	0.73	19.4	5	280	305	283	70	87.58
P-1	9	BURSERACEAE	Trattinnickia	Trattinnickia aspera	0.46	21.5	4	364	250	232	43	55.26
P-1	10	EUPHORBIACEAE	Conceveiba	Conceveiba guianensis	0.54	13.1	7	96	78	74	33	42.74
P-1	11	MALVACEAE	Apeiba	Apeiba membranacea	0.28	12.3	7	82	34	32	15	19.97
P-1	12	MELASTOMATACEAE	Miconia	Miconia affinis	0.62	10.7	1	57	52	50	4	5.21
P-1	13	ARECACEAE	Iriartea	Iriartea deltoidea	0.28	29.3	18	801	329	312	217	256.42
P-1	14	MYRISTICACEAE	Iryanthera	Iryanthera juruensis	0.63	16.6	5	183	173	161	44	56.44
P-1	15	ARECACEAE	Iriartea	Iriartea deltoidea	0.28	17.5	11	212	87	81	47	60.23
P-1	16	LAURACEAE	Beilschmiedia	Beilschmiedia sp	0.56	11.3	3	66	55	52	11	15.08
P-1	17	MORACEAE	Brosimum	Brosimum lactescens	0.66	16.6	3	183	179	167	27	35.86
P-1	18	RUBIACEAE	Amaioua	Amaioua guianensis	0.63	14.6	3	131	123	115	20	27.13
P-1	19	MYRISTICACEAE	Iryanthera	Iryanthera juruensis	0.63	22.7	9	421	398	370	150	180.19

P-1	20	OCHNACEAE	Ouratea	Ouratea sp	0.73	16.1	5	169	183	171	48	60.78
P-1	21	MALVACEAE	Huberodendron	Huberodendron swietenioides	0.56	13.1	3	96	81	76	15	19.74
P-1	22	MYRISTICACEAE	Iryanthera	Iryanthera juruensis	0.63	18.7	5	251	238	221	56	70.86
P-1	23	SALICACEAE	Laetia	Laetia procera	0.63	57.5	20	3527	3332	###	###	2261.23
P-1	24	BURSERACEAE	Tetragastris	Tetragastris altissima	0.71	15.5	7	152	161	151	60	76.00
P-1	25	LAURACEAE	Beilschmiedia	Beilschmiedia sp	0.56	20.1	8	305	256	238	92	113.79
P-1	26	ARECACEAE	Euterpe	Euterpe precatoria	0.41	15.2	15	146	88	83	72	89.73
P-1	27	ARECACEAE	Euterpe	Euterpe precatoria	0.41	19.3	10	275	167	155	77	95.83
P-1	28	FABACEAE	Tachigali	Tachigali vasquezii	0.56	21.3	12	358	298	277	155	186.84
P-1	29	SAPINDACEAE	Allophylus	Allophylus sp	0.48	17.2	5	202	145	135	36	46.60
P-1	30	ARECACEAE	Euterpe	Euterpe precatoria	0.41	14.1	1	120	73	68	4	5.93
P-1	31	ARECACEAE	Euterpe	Euterpe precatoria	0.41	18.3	15	240	146	135	104	127.99
P-1	32	MORACEAE	Pseudolmedia	Pseudolmedia macrophylla	0.66	15.0	3	139	137	128	23	29.78
P-1	33	MORACEAE	Pseudolmedia	Pseudolmedia macrophylla	0.66	15.2	4	146	144	134	31	40.44
P-1	34	ACHARIACEAE	Lindackeria	Lindackeria paludosa	0.56	15.0	1	141	118	110	6	9.02
P-1	35	ANNONACEAE	Onychopetalum	Onychopetalum krukoffii	0.63	11.8	4	73	69	65	18	23.83
P-1	36	SIPARUNACEAE	Siparuna	Siparuna cuspidata	0.66	12.7	1	90	88	83	5	7.64
P-1	37	ARECACEAE	Euterpe	Euterpe precatoria	0.41	15.9	12	164	100	93	63	79.04
P-1	38	MELIACEAE	Guarea	Guarea pubescens	0.57	18.5	9	245	208	193	89	110.02
P-1	39	LAURACEAE	Beilschmiedia	Beilschmiedia sp	0.56	42.6	21	1913	1608	###	###	1195.77
P-1	40	LAURACEAE	Beilschmiedia	Beilschmiedia sp	0.56	29.6	12	823	692	657	302	351.48
P-1	41	FABACEAE	Myroxylon	Myroxylon balsamum	0.78	83.5	19	6560	7613	###	###	5337.59
P-1	42	ARECACEAE	Euterpe	Euterpe precatoria	0.41	19.1	15	268	162	151	113	138.34
P-1	43	MYRISTICACEAE	virola	virola elongata	0.52	11.5	3	68	53	50	11	14.37
P-1	44	URTICACEAE	Pourouma	Pourouma minor	0.44	34.4	15	1178	782	761	402	461.46
P-1	45	COMBRETACEAE	Terminalia	Terminalia amazonia	0.68	11.8	3	73	74	70	14	19.43
P-1	46	CHRYSOBALANACEAE	Licania	Licania canescens	0.88	21.3	10	358	470	437	204	242.06
P-1	47	VIOLACEAE	Rinoreocarpus	Rinoreocarpus ulei	0.65	12.9	5	92	89	84	27	35.70

P-1	48	NYCTAGINACEAE	Neea	Neea spruceana	0.68	25.5	10	565	570	533	223	263.99
P-1	49	APOCYNACEAE	Aspidosperma	Aspidosperma parvifolium	0.78	20.4	10	317	370	344	165	198.03
P-1	50	NYCTAGINACEAE	Neea	Neea spruceana	0.68	15.9	3	164	166	155	26	34.27
P-1	51	BIGNONIACEAE	Jacaranda	Jacaranda copaia	0.35	20.4	10	317	168	156	75	93.10
P-1	52	ARECACEAE	Euterpe	Euterpe precatoria	0.41	18.1	12	234	142	132	82	101.45
P-1	53	MYRISTICACEAE	Iryanthera	Iryanthera juruensis	0.63	20.4	5	317	300	279	67	83.82
P-1	54	LECYTHIDACEAE	Eschweilera	Eschweilera coriacea	0.85	22.7	10	422	537	499	224	264.95
P-1	55	MORACEAE	Pseudolmedia	Pseudolmedia laevigata	0.63	12.4	3	84	79	75	15	19.93
P-1	_56_	FABACEAE	Tachigali	Tachigali vasquezii	0.56	12.7	5	90	75	71	23	30.40
P-1	57	ARECACEAE	Euterpe	Euterpe precatoria	0.41	21.3	14	358	217	202	132	159.84
P-1	58_	URTICACEAE	Cecropia	Cecropia sciadophylla	0.39	21.0	10	344	199	184	87	107.54
P-1	59_	URTICACEAE	Cecropia	Cecropia sciadophylla	0.39	34.7	18	1204	695	678	427	489.30
P-1	60_	MYRISTICACEAE	Iryanthera	Iryanthera juruensis	0.63	24.8	5	530	501	468	99	122.16
P-1	61	APOCYNACEAE	Aspidosperma	Aspidosperma parvifolium	0.78	21.6	10	372	434	403	186	222.27
P-1	62_	FABACEAE	Senna	Senna multifuga	0.58	20.1	3	305	265	246	36	46.15
P-1	63_	SALICACEAE_	Casearia	Casearia sp1	0.67	12.8	. 8	92	92	87	45	57.44
P-1	64	FABACEAE	Amburana	Amburana cearensis	0.52	10.5	3	53	42	40	9	12.19
P-1	65_	URTICACEAE	Cecropia	Cecropia sciadophylla	0.39	21.0	12	344	199	184	104	127.93
P-1	66	RUTACEAE	Zanthoxylum	Zanthoxylum sp	0.61	15.3	10	147	135	126	73	91.03
P-1	67	URTICACEAE	Cecropia	Cecropia sciadophylla	0.39	35.0	14	1230	710	694	338	391.92
P-1	68	URTICACEAE	Cecropia	Cecropia sciadophylla	0.39	18.1	9	234	135	125	58	73.58
P-1	69	SIPARUNACEAE	Siparuna	Siparuna decipiens	0.64	11.8	29	73	70	66	131	159.13
P-1	70	MYRISTICACEAE	Iryanthera	Iryanthera juruensis	0.63	10.2	21	49	47	44	70	87.80
P-10	1	ANNONACEAE	Guatteria	Guatteria olivacea	0.46	33.6	14	1117	760	736	367	423.63
P-10	2	LAURACEAE	Ocotea	Ocotea longifolia	0.53	10.7	9	56	44	42	27	35.77
P-10	3	ANACARDIACEAE	Astronium	Astronium graveolens	0.86	14.2	9	120	154	145	79	98.27
P-10	4	ARECACEAE	Euterpe	Euterpe precatoria	0.41	16.6	9	183	111	103	51	64.77
P-10	5	ARECACEAE	Euterpe	Euterpe precatoria	0.41	12.7	_10	90	55	52	34	43.44

P-10	6	BURSERACEAE	Trattinnickia	Trattinnickia aspera	0.46	21.3	4	358	246	229	43	54.64
P-10	7	BURSERACEAE	Tetragastris	Tetragastris altissima	0.71	14.3	4	124	131	123	30	38.53
P-10	8	NYCTAGINACEAE	Neea	Neea spruceana	0.68	25.1	12	547	552	516	261	306.61
P-10	9	BURSERACEAE	Protium	Protium amazonicum	0.60	12.7	3	90	80	76	15	19.97
P-10	10	URTICACEAE	Pourouma	Pourouma minor	0.44	27.1	15	658	437	411	249	292.46
P-10	11	ARECACEAE	Oenocarpus	Oenocarpus bataua	0.65	17.5	6	212	206	192	61	76.59
P-10	12	LAURACEAE	Ocotea	Ocotea puberula	0.43	10.2	6	49	32	30	14	18.53
P-10	13	FABACEAE	Inga	Inga auristellae	0.58	12.7	3	90	78	73	14	19.35
P-10	14	ARECACEAE	Euterpe	Euterpe precatoria	0.41	16.6	14	183	111	103	79	98.64
P-10	15	MYRISTICACEAE	Iryanthera	Iryanthera juruensis	0.63	13.1	6	96	91	86	33	42.70
P-10	16	FABACEAE	Inga	Inga acrocephala	0.51	27.1	12	658	504	473	229	270.75
P-10	17	FABACEAE	Tachigali	Tachigali vasquezii	0.56	16.2	9	173	145	135	68	84.49
P-10	18	FABACEAE	Inga	Inga thibaudiana	0.58	23.2	14	447	387	360	223	263.73
P-10	19	NYCTAGINACEAE	Neea	Neea spruceana	0.68	32.3	12	1015	1025	986	431	493.53
P-10	20	SAPOTACEAE	Pouteria	Pouteria sp	0.77	30.7	12	902	1036	989	445	508.53
P-10	21	MYRTACEAE	Eugenia	Eugenia sp1	0.76	31.8	9	981	1115	###	354	409.00
P-10	22	SIPARUNACEAE	Siparuna	Siparuna decipiens	0.64	10.8	1	58	55	53	4	5.49
P-10	23	ARECACEAE	Iriartea	Iriartea deltoidea	0.46	27.7	12	698	482	454	217	256.76
P-10	24	CHRYSOBALANACEAE	Hirtella	Hirtella excelsa	0.80	32.1	13	1005	1199	###	547	619.52
P-10	25	MELIACEAE	Trichilia	Trichilia maynasiana	0.69	12.7	3	90	93	88	17	22.85
P-10	26	MORACEAE	Brosimum	Brosimum lactescens	0.66	26.7	8	639	625	587	191	227.45
P-10	27	MALVACEAE	Eriotheca	Eriotheca globosa	0.44	63.3	14	4202	2774	###	###	1373.51
P-10	28	SAPOTACEAE	Micropholis	Micropholis venulosa	0.67	32.1	12	1005	1005	966	423	485.33
P-10	29	SIPARUNACEAE	Siparuna	Siparuna cuspidata	0.66	11.8	3	73	71	68	14	18.74
P-10	30	MYRISTICACEAE	Iryanthera	Iryanthera laevis	0.62	10.8	3	58	53	51	11	15.03
P-10	31	ARECACEAE	Euterpe	Euterpe precatoria	0.41	15.9	10	164	100	93	52	66.45
P-10	32	ARECACEAE	Iriartea	Iriartea deltoidea	0.28	25.5	9	565	232	217	82	101.56
P-10	33	ANNONACEAE	Annona	Annona sp1	0.44	36.3	12	1337	883	870	356	411.64

P-10	34	FABACEAE	Swartzia	Swartzia sp	0.84	14.0	5	116	146	137	42	53.57
P-10	35	SAPOTACEAE	Pouteria	Pouteria torta	0.77	11.1	3	63	72	68	15	19.66
P-10	36	LAURACEAE	Ocotea	Ocotea oblonga	0.39	11.8	9	73	42	40	25	32.20
P-10	37	NYCTAGINACEAE	Neea	Neea spruceana	0.68	11.1	5	63	63	60	21	28.26
P-10	38	BURSERACEAE	Tetragastris	Tetragastris panamensis	0.73	42.3	12	1891	2066	###	802	892.01
P-10	39	MYRISTICACEAE	Iryanthera	Iryanthera juruensis	0.63	13.1	3	96	91	86	16	22.07
P-10	40	NYCTAGINACEAE	Neea	Neea spruceana	0.68	3.2	14	3	3	2	5	6.93
P-10	41	FABACEAE	Tachigali	Tachigali poeppigiana	0.56	14.2	6	122	101	95	35	44.68
P-10	42	URTICACEAE	Pourouma	Pourouma guianensis	0.37	21.3	12	358	198	184	103	126.47
P-10	43	BURSERACEAE	Tetragastris	Tetragastris panamensis	0.73	10.2	3	49	54	51	12	15.81
P-10	44	MORACEAE	Pseudolmedia	Pseudolmedia laevigata	0.63	28.6	14	759	713	674	368	424.89
P-10	45	ARECACEAE	Oenocarpus	Oenocarpus bataua	0.65	13.7	6	109	106	100	37	47.93
P-10	46	ANACARDIACEAE	Tapirira	Tapirira guianensis	0.46	18.1	12	234	159	148	92	113.42
P-10	47	OLACACEAE	Heisteria	Heisteria nitida	0.70	11.7	4	71	74	71	19	25.87
P-10	48	ARECACEAE	Iriartea	Iriartea deltoidea	0.28	12.7	3	90_	37	35	7	9.53
P-10	49	SABIACEAE	Meliosma	Meliosma herbertii	0.52	19.1	9	268_	206	191	86	106.55
P-10	50	FABACEAE	Tachigali	Tachigali poeppigiana	0.56	21.6	7	372	310	288	93	115.04
P-10	51	APOCYNACEAE	Tabernaemontana	Tabernaemontana cymosa	0.47	20.4	10	317	223	207	99	122.09
P-10	52	MELIACEAE	Trichilia	Trichilia maynasiana	0.69	10.5	1	53	55	53	4	5.56
P-10	53	FABACEAE	Vataireopsis	Vataireopsis sp	0.64	10.2	3	49	47	45	10	13.94
P-10	54	FABACEAE	Vataireopsis	Vataireopsis sp	0.64	10.2	3	49	47	45	10	13.94
P-10	55	SABIACEAE	Meliosma	Meliosma herbertii	0.52	25.8	5	583	448	420	87	107.81
P-10	56	BURSERACEAE	Tetragastris	Tetragastris altissima	0.71	28.0	9	718	758	715	255	299.09
P-10	57	OLACACEAE	Heisteria	Heisteria nitida	0.70	24.2	12	496	521	486	252	296.11
P-10	58	MYRISTICACEAE	Iryanthera	Iryanthera laevis	0.62	13.4	9	103	94	89	50	63.96
P-10	59	BURSERACEAE	Tetragastris	Tetragastris panamensis	0.73	17.8	10	223_	244	227	119	144.40
P-10	60	LAURACEAE	Ocotea	Ocotea oblonga	0.39	60.7	23	3897	2242	###	###	1784.46
P-10	61	ARECACEAE	Iriartea	Iriartea deltoidea	0.28	27.1	15	658	271	254	154	185.40

P-11	1	BURSERACEAE	Tetragastris	Tetragastris panamensis	0.73	45.2	12	2177	2379	###	915	1010.48
P-11	2	BURSERACEAE	Tetragastris	Tetragastris panamensis	0.73	21.3	8	358	391	363	136	164.29
P-11	3	MALVACEAE	Eriotheca	Eriotheca globosa	0.41	37.2	18	1419	868	861	521	591.87
P-11	4	ANNONACEAE	Xylopia	Xylopia sp	0.58	12.6	1	88	76	72	5	6.68
P-11	5	ARECACEAE	Euterpe	Euterpe precatoria	0.41	15.9	5	164	100	93	26	34.34
P-11	6	ARECACEAE	Euterpe	Euterpe precatoria	0.41	15.9	6	164	100	93	31	40.85
P-11	7	MELIACEAE	Guarea	Guarea gomma	0.65	12.7	1	90	87	82	5	7.58
P-11	8	MORACEAE	Pseudolmedia	Pseudolmedia macrophylla	0.66	11.8	1	74	73	69	5	6.70
P-11	9	SAPOTACEAE	Diploon	Diploon cuspidatum	0.85	19.7	1	292	370	344	17`	22.55
P-11	10	LAURACEAE	Aniba	Aniba panurensis	0.61	10.8	3	58	53	50	11	14.91
P-11	11	BIGNONIACEAE	Jacaranda	Jacaranda copaia	0.35	14.5	3	127	67	63	11	15.38
P-11	12	COMBRETACEAE	Terminalia	Terminalia amazonia	0.68	23.9	12	479	487	454	237	279.40
P-11	13	LAURACEAE	An <u>iba</u>	Aniba panurensis	0.61	15.3	7	149	136	127	51	64.94
P-11	14	LAURACEAE	Aniba	Aniba panurensis	0.61	14.0	6	116	106	100	37	47.14
P-11	15	MORACEAE	Clarisia	Clarisia racemosa	0.59	75.6	25	5652	4939	###	###	4372.12
P-11	16	LECYTHIDACEAE	Eschweilera	Eschweilera coriacea	0.85	20.8	10	336	427	397	188	224.17
P-11	17	ANNONACEAE	Onychopetalum	Onychopetalum krukoffii	0.63	26.6	12	632	596	559	274	320.36
P-11	18	ARECACEAE	Euterpe	Euterpe precatoria	0.41	18.1	10	234	142	132	68	85.28
P-11	19	ARECACEAE	Oenocarpus	Oenocarpus bataua	0.65	17.1	3	200	194	181	29	37.96
P-11	20	BURSERACEAE	Tetragastris	Tetragastris altissima	0.71	10.7	5	56	59	57	21	27.32
P-11	21	MORACEAE	Perebea	Perebea xanthochyma	0.56	31.2	14	935	781	747	389	447.37
P-11	22	MORACEAE	Brosimum	Brosimum lactescens	0.61	12.9	1	94	85	80	5	7.33
P-11	23	MELIACEAE	Cabralea	Cabralea canjerana	0.53	14.3	4	122	97	91	22	29.12
P-11	24	LINACEAE	Roucheria	Roucheria punctata	0.83	18.0	8	227	280	260	108	132.59
P-11	25	LECYTHIDACEAE	Bertholletia	Bertholletia excelsa	0.64	15.7	8	159	152	142	64	80.65
P-11	26	URTICACEAE	Cecropia	Cecropia sciadophylla	0.39	32.1	12	1005	580	558	244	287.64
P-11	27	FABACEAE	Inga	Inga adenophylla	0.58	22.5	7	413	357	332	105	128.59
P-11	28	RUBIACEAE	Capirona	Capirona decorticans	0.59	22.7	4	419	371	345	62	77.98

P-11	29	FABACEAE	Vataireopsis	Vataireopsis sp	0.64	12.1	4	79	76	72	19	25.56
P-11	30	MORACEAE	Pseudolmedia	Pseudolmedia laevigata	0.63	15.8	4	162	152	142	32	41.60
P-11	31	MORACEAE	Helicostylis	Helicostylis tomentosa	0.61	32.8	12	1053	957	924	400	459.96
P-11	32	EUPHORBIACEAE	Pausandra	Pausandra trianae	0.59	15.9	9	165	146	136	69	86.02
P-11	33	MORACEAE	Helicostylis	Helicostylis tomentosa	0.63	11.7	6	71	67	63	26	34.23
P-11	34	APOCYNACEAE	Aspidosperma	Aspidosperma parvifolium	0.78	43.9	19	2041	2380	###	###	1571.86
P-11	35	APOCYNACEAE	Aspidosperma	Aspidosperma parvifolium	0.78	19.9	7	297	346	321	110	134.37
P-11	36	OLACACEAE	Heisteria	Heisteria nitida	0.70	31.5	15	958	1007	965	534	605.90
P-11	37	RUBIACEAE	Coussarea	Coussarea sp	0.62	11.0	3	61	56	53	11	15.61
P-11	38	BURSERACEAE	Tetragastris	Tetragastris altissima	0.71	19.1	7	268	283	263	92	113.53
P-11	39	FABACEAE	Inga	Inga oerstediana	0.58	13.0	1	95	82	77	5	7.06
P-11	40	SIPARUNACEAE	Siparuna	Siparuna cuspidata	0.66	12.1	1	78	77	72	5	6.93
P-11	41	MORACEAE	Pseudolmedia	Pseudolmedia laevigata	0.63	28.2	11	730	685	647	280	327.78
P-11	42	SAPOTACEAE	Chrysophyllum	Chrysophyllum sp	0.76	54.4	20	3178	3604	###	###	2424.97
P-11	43	LECYTHIDACEAE	Eschweilera	Eschweilera coriacea	0.85	13.4	4	104	132	125	31	40.67
P-11	44	MYRISTICACEAE	Iryanthera	Iryanthera laevis	0.62	19.9	7	297	273	253	87	107.01
P-11	45	MORACEAE	Brosimum	Brosimum lactescens	0.66	14.3	3	124	121	114	21	27.23
P-11	46	FABACEAE	Talisia	Talisia sp2	0.84	30.8	13	907	1137	###	528	599.03
P-11	47	ARECACEAE	Euterpe	Euterpe precatoria	0.41	13.8	11	112	68	64	43	55.57
P-11	48	SAPOTACEAE	Diploon	Diploon cuspidatum	0.85	30.4	9	878	1114	###	360	416.06
P-11	49	MYRISTICACEAE	virola	Virola sebifera	0.46	10.8	1	58	39	38	3	3.97
P-11	50	CLUSIACEAE	Symphonia	Symphonia globulifera	0.62	14.9	3	138	127	119	21	27.77
P-11	51	VOCHYSIACEAE	Erisma	Erisma uncinatum	0.52	####	29	####	8767	###	###	#######
P-12	1	MORACEAE	Brosimum	Brosimum lactescens	0.66	21.3	9	355	347	323	136	164.47
P-12	2	BURSERACEAE	Tetragastris	Tetragastris altissima	0.71	39.8	9	1648	1741	###	514	583.56
P-12	3	BURSERACEAE	Tetragastris	Tetragastris altissima	0.56	33.7	10	1128	943	915	325	377.18
P-12	4	BURSERACEAE	Tetragastris	Tetragastris altissima	0.71	23.9	9	479	506	472	185	220.59
P-12	5	MORACEAE	Brosimum	Brosimum lactescens	0.61	21.3	9	358	325	302	127	154.20

P-12	6	BURSERACEAE	Tetragastris	Tetragastris altissima	0.71	28.3	13	738	780	737	376	433.72
P-12	7	SAPOTACEAE	Micropholis	Micropholis guyanensis	0.77	30.9	12	912	1047	###	449	512.80
P-12	8	BURSERACEAE	Tetragastris	Tetragastris altissima	0.71	12.7	3	90	95	90	18	23.41
P-12	9	MORACEAE	Batocarpus	Batocarpus amazonicus	0.53	10.2	1	49	39	37	3	4.10
P-12	10	MYRTACEAE	Eugenia	Eugenia sp1	0.76	12.1	1	78	89	84	6	8.00
P-12	11	MORACEAE	Pseudolmedia	Pseudolmedia laevis	0.62	11.8	3	73	67	64	13	17.75
P-12	12	BURSERACEAE	Tetragastris	Tetragastris altissima	0.71	17.6	5	214	227	211	56	70.31
P-12	13	BURSERACEAE	Tetragastris	Tetragastris altissima	0.71	22.3	7	401	424	394	125	152.27
P-12	14	BURSERACEAE	Tetragastris	Tetragastris altissima	0.71	56.3	14	3396	3588	###	###	1723.78
P-12	15	BURSERACEAE	Tetragastris	Tetragastris panamensis	0.73	18.4	7	242	265	246	88	109.20
P-12	16	SAPOTACEAE	Pouteria	Pouteria reticulata	0.88	73.2	16	5376	7029	###	###	3949.07
P-12	17	FABACEAE	Vataireopsis	Vataireopsis sp	0.64	11.1	1	63	60	57	4	5.81
P-12	18_	RUBIACEAE	Faramea	Faramea sp	0.65	13.8	1	111	107	101	6	8.76
P-12	19	MORACEAE	Pseudolmedia	Pseudolmedia macrophylla	0.66	31.3	10	939	925	886	329	381.29
P-12	20_	FABACEAE	Inga	inga alba	0.59	63.3	14	4213	3685	###	###	1800.27
P-12	21_	URTICACEAE	Pourouma	Pourouma minor	0.44	10.8	3	58	38	37	8	11.03
P-12	22_	SAPINDACEAE	Allophylus	Allophylus sp	0.48	18.1	3	231	166	154	24	31.54
P-12	23_	BURSERACEAE	Tetragastris	Tetragastris altissima	0.71	27.1	5	658	696	654	132	159.97
P-12	24	APOCYNACEAE	Aspidosperma	Aspidosperma macrocarpon	0.71	13.1	8	96	102	96	49	62.62
P-12	25_	MORACEAE	Brosimum	Brosimum alicastrum	0.63	19.7	3	292	272	253	37	47.91
P-12	26	FABACEAE	Inga	Inga capitata	0.59	28.0	7	718	635	599	166	198.70
P-12	27_	SALICACEAE	Casearia	Casearia sp1	0.67	14.0	3	116	117	110	20	26.68
P-12	28	OLACACEAE	Minquartia	Minquartia guianensis	0.80	12.7	4	90	107	102	26	34.60
P-12	29	MELIACEAE	Guarea	Guarea gomma	0.65	12.1	3	78	76	72	15	19.58
P-13	1	ARECACEAE	Euterpe	Euterpe precatoria	0.41	16.2	12	173	105	98	65	82.08
P-13	2	MORACEAE	Helicostylis	Helicostylis tomentosa	0.63	21.1	5	347	324	301	71	88.49
P-13	3	MORACEAE	Pseudolmedia	Pseudolmedia laevis	0.62	21.0	7	344	318	295	97	119.71
P-13	4	BURSERACEAE	Tetragastris	Tetragastris altissima	0.71	10.8	5	58	61	58	21	27.94

P-13	5	FABACEAE	Inga	Inga ruiziana	0.58	12.7	9	90	78	73	43	55.07
P-13	6	FABACEAE	Abarema	Abarema jupunba	0.59	40.1	23	1678	1465	###	###	1207.73
P-13	7	LECYTHIDACEAE	Eschweilera	Eschweilera coriacea	0.72	45.8	22	2243	2411	###	###	1819.36
P-13	8	SAPOTACEAE	Pouteria	Pouteria torta	0.77	50.9	21	2787	3197	###	###	2263.05
P-13	9	SAPOTACEAE	Pouteria	Pouteria torta	0.77	55.7	20	3323	3812	###	###	2562.32
P-13	10	RUBIACEAE	Amaioua	Amaioua guianensis	0.63	22.0	5	386	360	335	77	95.52
P-13	11	MORACEAE	Pseudolmedia	Pseudolmedia macrophylla	0.66	11.5	4	68	67	63	18	23.57
P-13	12	MYRISTICACEAE	virola	Virola sebifera	0.46	34.4	12	1178	801	780	329	381.76
P-13	13	FABACEAE	Vataireopsis	Vataireopsis sp	0.64	12.7	3	90	86	81	16	21.32
P-13	14	BURSERACEAE	Protium	Protium sagotianum	0.56	21.0	2	344	286	266	25	32.90
P-13	15	NYCTAGINACEAE	Neea	Neea spruceana	0.68	28.6	7	759	766	724	198	235.24
P-13	16	SABIACEAE	Meliosma	Meliosma herbertii	0.52	15.9	5	164	126	118	33	43.02
P-13	17	BURSERACEAE	Protium	Protium aracouchini	0.49	10.4	5	53	38	37	14	18.38
P-13	18	MORACEAE	Brosimum	Brosimum lactescens	0.66	31.3	9	944	924	884	295	343.91
P-13	19	SAPOTACEAE	Micropholis	Micropholis guyanensis	0.66	29.9	10	845	828	788	300	349.34
P-13	20	BORAGINACEAE	Cordia	Cordia sp1	0.52	29.6	8	823	637	605	185	220.92
P-13	21	SABIACEAE	Meliosma	Meliosma herbertii	0.52	23.2	5	447	344	320	71	88.44
P-13	22	MORACEAE	Pseudolmedia	Pseudolmedia macrophylla	0.66	28.0	9	718	707	667	237	279.89
P-13	23	MYRISTICACEAE	Iryanthera	Iryanthera juruensis	0.63	12.5	2	86	81	77	10	13.84
P-13	24	URTICACEAE	Cecropia	Cecropia sciadophylla	0.39	10.8	3	58	33	32	7	9.66
P-13	25	FABACEAE	Tachigali	Tachigali vasquezii	0.56	27.0	6	655	546	513	124	151.25
P-13	26	URTICACEAE	Cecropia	Cecropia sciadophylla	0.39	26.8	10	645	372	350	142	171.39
P-13	27	MALVACEAE	Eriotheca	Eriotheca globosa	0.41	13.7	8	109	67	63	31	40.64
P-13	28	NYCTAGINACEAE	Neea	Neea spruceana	0.68	32.5	9	1029	1038	###	327	379.27
P-13	29	MORACEAE	Pseudolmedia	Pseudolmedia macrophylla	0.66	17.7	10	219	215	200	105	129.06
P-13	30	LINACEAE	Hebepetalum	Hebepetalum humiriifolium	0.87	13.1	3	96	125	118	23	29.88
P-13	31	URTICACEAE	Cecropia	Cecropia sciadophylla	0.39	19.4	12	280	161	150	89	110.10
P-13	32	ARECACEAE	Euterpe	Euterpe precatoria	0.41	18.5	12	245	148	138	85	104.86

P-13	33	RUBIACEAE	Faramea	Faramea sp	0.65	16.2	3	173	168	157	26	34.23
P-13	34	LECYTHIDACEAE	Eschweilera	Eschweilera coriacea	0.85	22.6	8	416	529	492	177	211.95
P-13	35	URTICACEAE	Cecropia	Cecropia sciadophylla	0.39	16.2	7	172	99	92	36	46.51
P-13	36	VIOLACEAE	Leonia	Leonia glycycarpa	0.60	28.3	9	738	661	624	221	261.10
P-13	37	ANACARDIACEAE	Astronium	Astronium graveolens	0.86	13.7	2	109	140	132	16	21.98
P-13	38	MORACEAE	Pseudolmedia	Pseudolmedia macrophylla	0.66	11.1	2	63	62	59	8	11.55
P-13	39	APOCYNACEAE	Aspidosperma	Aspidosperma parvifolium	0.78	10.8	2	58	68	64	9	12.82
P-13	40	URTICACEAE	Pourouma	Pourouma minor	0.37	15.9	9	164	91	85	43	55.08
P-13	41	DICHAPETALACEAE	Tapura	Tapura sp	0.66	17.2	8	202	199	186	80	98.73
P-13	42	EUPHORBIACEAE	Conceveiba	Conceveiba guianensis	0.54	10.5	9	53	43	41	27	35.91
P-13	43	MALVACEAE	Matisia	Matisia malacocalyx	0.48	21.3	9	358	259	240	101	124.08
P-13	44	ARECACEAE	Euterpe	Euterpe precatoria	0.41	10.2	6	49	30	29	13	17.46
P-13	45	SIPARUNACEAE	Siparuna	Siparuna sp	0.66	40.7	9	1733	1698	###	498	566.86
P-13	46	FABACEAE	Inga	Inga acrocephala	0.51	20.4	11	317	243	225	119	145.17
P-13	47	URTICACEAE	Pourouma	Pourouma minor	0.44	29.5	13	818	543	516	257	301.65
P-13	48	LECYTHIDACEAE	Bertholletia	Bertholletia excelsa	0.64	####	31	####	####	###	###	#######
P-13	49	MORACEAE	Pseudolmedia	Pseudolmedia macrophylla	0.66	15.0	5	139	137	128	38	48.44
P-13	50	URTICACEAE	Pourouma	Pourouma minor	0.44	41.4	12	1798	1193	###	465	531.13
P-13	51	LECYTHIDACEAE	Eschweilera	Eschweilera coriacea	0.85	35.3	13	1256	1598	###	704	788.12
P-13	52	MYRISTICACEAE	Iryanthera	Iryanthera juruensis	0.63	17.4	5	208	197	183	49	61.94
P-13	53	MORACEAE	Pseudolmedia	Pseudolmedia macrophylla	0.66	21.6	11	372	367	341	173	207.36
P-13	54	BURSERACEAE	Tetragastris	Tetragastris panamensis	0.73	17.4	6	209	229	213	68	84.90
P-13	55	SAPOTACEAE	Micropholis	Micropholis guyanensis	0.66	11.5	3	68	66	63	13	17.85
P-14	1	ARECACEAE	Euterpe	Euterpe precatoria	0.41	13.7	6	109	66	62	23	30.65
P-14	2	SAPOTACEAE	Micropholis	Micropholis brochidroma	0.65	18.5	5	245	237	220	56	71.19
P-14	3	ARECACEAE	Iriartea	Iriartea deltoidea	0.46	22.3	10	401	277	258	117	142.67
P-14	4	BURSERACEAE	Tetragastris	Tetragastris altissima	0.71	14.6	9	131	139	130	70	86.95
P-14	5	MORACEAE	Pseudolmedia	pseudolmedia laevis	0.62	26.9	9	651	601	564	206	244.01

P-14	6	MORACEAE	Pseudolmedia	Pseudolmedia laevigata	0.63	10.8	2	58	54	52	8	10.43
P-14	7	URTICACEAE	Pourouma	Pourouma minor	0.44	20.1	9	305	202	188	82	101.65
P-14	8	SIPARUNACEAE	Siparuna	Siparuna decipiens	0.64	13.9	3	115	110	103	19	25.30
P-14	9	URTICACEAE	Cecropia	Cecropia sciadophylla	0.39	11.1	7	63	36	34	17	22.88
P-14	10	ARECACEAE	Iriartea	Iriartea deltoidea	0.28	28.3	11	738	304	287	124	150.62
P-14	11	FABACEAE	Vataireopsis	Vataireopsis sp	0.64	16.2	2	173	166	155	17	23.02
P-14	12	FABACEAE	Tachigali	Tachigali vasquezii	0.56	43.9	18	2048	1708	###	989	1088.32
P-14	13	SALICACEAE	Casearia	Casearia sp1	0.67	12.4	2	84	84	80	11	14.41
P-14	14	MORACEAE	Pseudolmedia	Pseudolmedia laevigata	0.63	17.8	2	223	209	195	20	26.99
P-14	15	MALVACEAE	Luehea	Luehea grandiflora	0.53	13.1	3	96	77	72	14	18.79
P-14	16	FABACEAE	Lonchocarpus	Lonchocarpus sp	0.73	10.5	2	53	59	56	8	11.42
P-14	17	ARECACEAE	Euterpe	Euterpe precatoria	0.41	14.6	9	131	80	75	40	51.28
P-14	18	SAPOTACEAE	Chrysophyllum	Chrysophyllum sp	0.76	33.1	14	1078	1222	###	594	669.78
P-14	19	FABACEAE	Pseudopiptadenia	Pseudopiptadenia suaveolens	0.68	58.8	22	3675	3728	###	###	2762.52
P-14	20	ARECACEAE	Iriartea	Iriartea deltoidea	0.28	22.0	4	386	159	148	27	35.40
P-14	21	FABACEAE	Lonchocarpus	Lonchocarpus sp	0.73	29.9	9	845	926	880	301	351.24
P-14	22	BURSERACEAE	Protium	Protium sagotianum	0.56	17.2	6	202	168	157	50	63.90
P-14	23	LINACEAE	Roucheria	Roucheria punctata	0.83	19.4	8	280	344	320	127	153.94
P-14	24	MORACEAE	Maquira	Maquira guianensis	0.77	45.2	14	2177	2489	###	###	1221.50
P-14	25	MONIMIACEAE	Mollinedia	Mollinedia killipii	0.67	11.4	3	66	66	62	13	17.77
P-14	26	MORACEAE	Pseudolmedia	Pseudolmedia laevigata	0.63	12.2	2	81	76	72	10	13.16
P-14	27	URTICACEAE	Pourouma	Pourouma cecropiifolia	0.36	10.5	2	53	28	27	4	5.73
P-14	28	SIPARUNACEAE	Siparuna	Siparuna sp	0.66	33.4	12	1103	1080	###	448	512.32
P-14	29	ARECACEAE	Iriartea	Iriartea deltoidea	0.28	27.7	13	698	287	270	140	169.11
P-14	30	ARECACEAE	Iriartea	Iriartea deltoidea	0.46	17.7	3	218	150	140	22	29.14
P-14	31	MELIACEAE	Trichilia	Trichilia hirta	0.60	13.5	2	106	95	89	11	15.26
P-14	32	ARECACEAE	Iriartea	Iriartea deltoidea	0.28	24.8	14	530	218	203	121	147.40
P-14	33	ARECACEAE	Iriartea	Iriartea deltoidea	0.28	20.6	3	325	134	124	18	23.74

P-14	34	SIPARUNACEAE	Siparuna	Siparuna decipiens	0.64	12.4	2	84	80	76	10	13.79
P-14	35	URTICACEAE	Pourouma	Pourouma minor	0.44	43.9	14	2048	1359	###	612	689.19
P-14	36	RUBIACEAE	Amaioua	Amaioua guianensis	0.63	17.2	3	202	189	176	28	36.82
P-14	37	MORACEAE	Pseudolmedia	Pseudolmedia macrophylla	0.66	31.2	10	935	921	881	327	379.81
P-14	38	URTICACEAE	Pourouma	Pourouma minor	0.44	43.2	12	1976	1311	###	507	576.49
P-14	39	LAURACEAE	Ocotea	Ocotea puberula	0.43	13.1	7	96	62	59	26	34.39
P-14	40	ARECACEAE	Iriartea	Iriartea deltoidea	0.28	26.7	10	639	263	247	100	123.21
P-14	41	CLUSIACEAE	Symphonia	Symphonia globulifera	0.62	17.7	9	219	202	188	89	109.75
P-14	42	BURSERACEAE	Tetragastris	Tetragastris altissima	0.71	13.4	3	103	108	102	19	25.69
P-14	43	MORACEAE	Pseudolmedia	Pseudolmedia macrophylla	0.66	39.5	12	1619	1595	###	629	707.27
P-14	44	ARECACEAE	Euterpe	Euterpe precatoria	0.41	13.0	9	94	57	54	31	40.62
P-14	45	MYRISTICACEAE	Iryanthera	Iryanthera juruensis	0.63	10.2	5	49	47	44	17	22.39
P-14	46	MYRTACEAE_	Calyptranthes	Calyptranthes sp	0.78	11.3	3	65	76	72	15	20.54
P-14	47	SABIACEAE	Meliosma	Meliosma herbertii	0.52	13.7	3	109	84	79	15	19.85
P-14	48	MORACEAE	Brosimum	Brosimum lactescens	0.66	16.6	7	186	182	169	65	81.24
P-14	49	LAURACEAE	Ocotea	Ocotea sp2	0.53	46.8	12	2342	1835	###	703	786.35
P-14	50	MELIACEAE	Guarea	Guarea kunthiana	0.62	24.2	7	496	456	425	129	156.07
P-14	51	SAPOTACEAE	Chrysophyllum	Chrysophyllum sp	0.76	12.1	3	78	89	84	17	22.71
P-14	52	ARECACEAE	Euterpe	Euterpe precatoria	0.46	16.2	9	172	119	111	55	70.08
P-14	53	CLUSIACEAE	Symphonia	Symphonia globulifera	0.62	17.2	4	202	187	174	37	47.96
P-15	1	EUPHORBIACEAE	Pausandra	Pausandra trianae	0.59	14.3	2	124	109	102	12	16.74
P-15	2	LAURACEAE	Aniba	Aniba taubertiana	0.67	13.7	3	109	109	102	19	25.35
P-15	3	SAPOTACEAE	Chrysophyllum	Chrysophyllum sp	0.76	11.5	2	68	77	73	10	13.93
P-15	4	LAURACEAE	Ocotea	Ocotea puberula	0.61	11.2	3	64	58	55	12	15.93
P-15	5	ARECACEAE	Euterpe	Euterpe precatoria	0.41	32.1	9	1005	610	586	193	229.31
P-15	6	LECYTHIDACEAE	Eschweilera	Eschweilera coriacea	0.85	14.0	2	116	147	138	17	22.66
P-15	7	SIPARUNACEAE	Siparuna	Siparuna cuspidata	0.66	12.4	3	85	83	78	16	20.82
P-15	8	EUPHORBIACEAE	Pausandra	Pausandra trianae	0.59	11.8	3	74	65	62	13	17.14

P-15 9	BURSERACEAE	Tetragastris	Totana autois altinoisea		400	_				١	[]
		Tetragastris	Tetragastris altissima	0.71	12.2	2	79	84	79	11	14.58
P-15 10	EUPHORBIACEAE	Pausandra	Pausandra trianae	0.59	10.5	3	53	47	45	10	13.65
P-15 11	BURSERACEAE	Tetragastris	Tetragastris altissima	0.71	12.1	2	78	83	78	11	14.43
P-15 12	BURSERACEAE	Tetragastris	Tetragastris altissima	0.56	11.5	2	68	57	54	7	10.42
P-15 13	ARECACEAE	Iriartea	Iriartea deltoidea	0.28	29.0	12	780	321	304	141	170.70
P-15 14	ARECACEAE	Iriartea	Iriartea deltoidea	0.28	26.1	12	602	247	232	115	139.99
P-15 15	MORACEAE	Helicostylis	Helicostylis tomentosa	0.63	11.5	6	68	63_	60	25	33.00
P-15 16	ARECACEAE	Euterpe	Euterpe precatoria	0.41	17.3	11	204	124	115	68	84.84
P-15 17	URTICACEAE	Pourouma	Pourouma guianensis	0.38	14.0	9	117	66	62	34	44.38
P-15 18	SIPARUNACEAE	Siparuna	Siparuna decipiens	0.64	11.4	3	67	64	61	13	17.32
P-15 19	ANNONACEAE	Xylopia	Xylopia sp	0.58	10.9	8	59	51	48	28	36.40
P-15 20	BURSERACEAE	Tetragastris	Tetragastris altissima	0.71	32.5	13	1029	1087	###	494	562.31
P-15 21	ARECACEAE	Euterpe	Euterpe precatoria	0.41	19.1	12	268	162	151	91	111.86
P-15 22	ARECACEAE	Euterpe	Euterpe precatoria	0.41	10.5	5	53	32	31	11	15.57
P-15 23	BURSERACEAE	Tetragastris	Tetragastris altissima	0.71	29.0	11	780	824	780	333	385.93
P-15 24	ARECACEAE	Iriartea	Iriartea deltoidea	0.28	23.9	9	479	197	184	72	89.81
P-15 25	Malvaceae	Apeiba	Apeiba membranacea	0.28	73.1	17	5360	2205	###	###	1386.42
P-15 26	MALVACEAE	Matisia	Matisia malacocalyx	0.48	30.6	12	889	643	613	277	323.69
P-15 27	MYRTACEAE	Eugenia	Eugenia sp2	0.76	10.4	3	53	60	57	13	17.20
P-15 28	CHRYSOBALANACEAE	Hirtella	Hirtella excelsa	0.80	10.2	3	50	60	57	13	17.39
P-15 29	MORACEAE	Castilla	Castilla ulei	0.82	50.5	18	2742	3356	###	###	2046.83
P-15 30	ANNONACEAE	Xylopia	Xylopia sp	0.58	10.5	3	53	46	44	10	13.37
P-15 31	ARECACEAE	Socratea	Socratea exorrhiza	0.46	19.1	9	268	185	172	77	96.22
P-15 32	CLUSIACEAE	Garcinia	Garcinia madruno	0.69	12.4	2	84	87	82	11	14.80
P-15 33	NYCTAGINACEAE	Neea	Neea spruceana	0.68	20.7	4	329	332	309	59	74.07
P-15 34	BURSERACEAE	Tetragastris	Tetragastris altissima	0.71	17.3	8	204	216	201	86	106.23
P-15 35	CANNABACEAE	Celtis	Celtis schippii	0.53	23.3	11	450	354	329	160	192.25
P-15 36	SAPOTACEAE	Pouteria	Pouteria filipis	0.96	27.1	16	658	948	891	575	650.03

P-15	37	BURSERACEAE	 Tetragastris	Tetragastris altissima	0.71	39.2	10	1590	1679	###	553	625.62
P-15	38	MORACEAE	Pseudolmedia	Pseudolmedia laevigata	0.63	10.8	4	58	54	52	15	20.19
P-15	39	EUPHORBIACEAE	Sapium	Sapium marmirii	0.41	26.8	13	643	393	370	195	232.04
P-15	40	ARECACEAE	Euterpe	Euterpe precatoria	0.41	16.2	8	173	105	98	44	55.79
P-15	41	SALICACEAE	Laetia	Laetia procera	0.63	10.2	3	49	47	44	10	13.76
P-15	42	CHRYSOBALANACEAE	Hirtella	Hirtella pilosissima	0.88	16.6	4	183	240	224	49	62.43
P-15	43	MORACEAE	Castilla	Castilla ulei	0.82	12.2	2	79	97	92	12	16.77
P-15	44	BORAGINACEAE	Cordia	Cordia sp2	0.52	17.8	6	223	173	160	50	63.93
P-15	45	FABACEAE	Tachigali	Tachigali vasquezii	0.56	20.4	17	317	265	246	201	238.57
P-15	46	URTICACEAE	Cecropia	Cecropia sciadophylla	0.39	15.2	5	146	84	79	23	30.07
P-15	47	FABACEAE	Vataireopsis	Vataireopsis sp	0.64	13.1	2	96	92	87	11	15.19
P-15	48	ARECACEAE	Iriartea	Iriartea deltoidea	0.28	12.7	8	90	37	35	18	24.25
P-15	49	FABACEAE	Schizolobium	Schizolobium parahyba	0.35	69.7	20	4964	2567	###	###	1839.49
P-15	50	VIOLACEAE	Rinoreocarpus	Rinoreocarpus ulei	0.65	10.3	2	50	49	47	7	9.74
P-15	51	SAPOTACEAE	Pouteria	Pouteria reticulata	0.88	15.5	8	154	201	188	86	106.56
P-15	52	LAURACEAE	Ocotea	Ocotea bofo	0.53	15.1	3	142	111	104	18	24.24
P-15	53	BURSERACEAE	Tetragastris	Tetragastris altissima	0.71	45.8	13	2243	2369	###	985	1084.38
P-15	54	MYRISTICACEAE	Iryanthera	Iryanthera juruensis	0.63	10.8	2	58	55	52	8	10.50
P-15	_ 55	BURSERACEAE	Tetragastris	Tetragastris altissima	0.71	17.0	9	195	206	192	93	115.11
P-15	56	MYRISTICACEAE	Iryanthera	Iryanthera laevis	0.62	27.4	10	682	626	589	236	278.07
P-15	57	MORACEAE	Pseudolmedia	pseudolmedia laevis	0.62	22.0	9	386	357	331	137	165.51
P-15	58	NYCTAGINACEAE	Neea	Neea spruceana	0.68	21.0	8	344	347	322	122	147.98
P-15	59	ARECACEAE	Euterpe	Euterpe precatoria	0.41	14.3	5	122	74	70	21	27.86
P-15	60	MORACEAE	Clarisia	Clarisia racemosa	0.59	####	27	9267	8097	###	###	9781.86
P-16	1	SABIACEAE	Meliosma	Meliosma herbertii	0.52	10.8	3	57	44	42	9	12.55
P-16	2	MORACEAE	Pseudolmedia	Pseudolmedia macrophylla	0.66	16.6	10	183	180	168	92	113.62
P-16	3	MYRISTICACEAE	Iryanthera	Iryanthera juruensis	0.63	10.2	_ 3	49	47	44	10	13.77
P-16	4	CLUSIACEAE	Symphonia	Symphonia globulifera	0.62	32.8	16	1053	973	938	542	614.13

P-16	5	MORACEAE	Brosimum	Brosimum lactescens	0.66	16.9	4	192	188	175	38	48.90
P-16	6	APOCYNACEAE	Aspidosperma	Aspidosperma parvifolium	0.78	10.2	3	49	57	55	12	16.81
P-16	7	MORACEAE	Pseudolmedia	Pseudolmedia laevis	0.62	37.7	15	1458	1346	###	671	752.77
P-16	8	MORACEAE	Brosimum	Brosimum lactescens	0.66	27.0	9	655	640	602	219	259.07
P-16	9	ARECACEAE	Euterpe	Euterpe precatoria	0.41	11.4	5	67	40	38	13	18.18
P-16	10	APOCYNACEAE	Tabernaemontana	Tabernaemontana cymosa	0.47	28.2	12	732	514	485	229	270.40
P-16	11	ARECACEAE	Iriartea	Iriartea deltoidea	0.28	20.7	2	331	136	126	12	16.33
P-16	12	MORACEAE	Maquira	Maquira calophylla	0.62	78.0	13	5931	5488	###	###	2629.97
P-16	13	ARECACEAE	Iriartea	Iriartea deltoidea	0.28	30.2	5	867	356	339	64	80.50
P-16	14	MORACEAE	Maquira	Maquira guianensis	0.77	17.1	10	198	227	211	114	138.66
P-16	15	BURSERACEAE	Protium	Protium sagotianum	0.56	18.1	10	234	194	181	93	115.20
P-16	16	FABACEAE	Tachigali	Tachigali poeppigiana	0.56	18.0	9	227	189	176	83	102.34
P-16	17	URTICACEAE	Cecropia	Cecropia sciadophylla	0.39	46.5	19	2309	1333	###	809	898.77
P-16	18	MORACEAE	Clarisia	Clarisia racemosa	0.59	23.2	2	447	391	364	32	41.76
P-16	19	ANNONACEAE	Xylopia	Xylopia sp	0.58	13.8	6	112	97	91	34	43.57
P-16	20	BURSERACEAE	Tetragastris	Tetragastris altissima	0.56	15.0	4	139	116	109	26	33.50
P-16	21	LAURACEAE	Beilschmiedia	Beilschmiedia sp	0.56	28.0	12	718	603	569	270	316.37
P-16	22	LAURACEAE	Nectandra	Nectandra cissiflora	0.59	23.4	8	454	399	372	131	159.14
P-16	23	BURSERACEAE	Trattinnickia	Trattinnickia aspera	0.46	11.1	2	63	43	41	6	8.20
P-16	24	ARECACEAE	Euterpe	Euterpe precatoria	0.41	11.8	11	73	44	42	32	41.01
P-16	25	ARECACEAE	Euterpe	Euterpe precatoria	0.46	16.7	14	187	129	121	92	113.64
P-16	26	FABACEAE	Tachigali	Tachigali poeppigiana	0.56	11.9	5	76	63	60	20	26.88
P-16	27	SALICACEAE	Casearia	Casearia sp2	0.67	10.7	3	56	56	53	12	15.88
P-16	28	CANNABACEAE	Celtis	Celtis schippii	0.62	15.9	6	164	151	141	48	60.69
P-16	29	LAURACEAE	Ocotea	Ocotea puberula	0.43	17.5	8	212	137	128	54	68.34
P-16	30	MELIACEAE	Cedrela	Cedrela odorata	0.46	13.3	3	101	69	65	12	16.73
P-16	31	ARECACEAE	Oenocarpus	Oenocarpus mapora	0.65	10.2	6	49	48	46	21	27.30
P-16	32	ARECACEAE	Iriartea	Iriartea deltoidea	0.28	26.9	12	649	267	251	122	148.23

P-16	33	ARECACEAE	Iriartea	Iriartea deltoidea	0.28	22.9	5	432	177	165	37	47.48
P-16	34	SALICACEAE	Laetia	Laetia procera	0.63	41.0	18	1759	1662	###	974	1073.19
P-16	35	ARECACEAE	Euterpe	Euterpe precatoria	0.41	16.6	6	183	111	103	34	44.02
P-16	36	LINACEAE	Hebepetalum	Hebepetalum humiriifolium	0.87	10.2	2	49	64	61	9	12.67
P-16	37	ARECACEAE	Iriartea	Iriartea deltoidea	0.28	28.0	10	718	295	278	110	134.62
P-16	38	BURSERACEAE	Tetragastris	Tetragastris altissima	0.56	75.8	15	5673	4743	###	###	2589.34
P-16	39	MYRISTICACEAE	Iryanthera	Iryanthera laevis	0.62	18.3	3	239	219	204	31	40.87
P-16	40	FABACEAE	Tachigali	Tachigali vasquezii	0.56	33.7	19	1128	940	912	616	693.30
P-16	41	SIPARUNACEAE	Siparuna	Siparuna decipiens	0.64	13.4	7	103	98	92	41	52.34
P-16	42	ARECACEAE	Euterpe	Euterpe precatoria	0.41	15.6	12	156	94	88	60	76.06
P-16	43	SABIACEAE	Meliosma	Meliosma herbertii	0.52	16.9	2	192	148	138	15	20.09
P-16	44	ARECACEAE	Iriartea	Iriartea deltoidea	0.28	22.3	5	401	165	153	35	45.00
P-16	45	RUTACEAE	Zanthoxylum	Zanthoxylum sp	0.61	37.6	14	1447	1326	###	618	695.45
P-16	46	ARECACEAE	Iriartea	Iriartea deltoidea	0.46	23.9	_ 7	479	331	308	94	115.85
P-16	47	URTICACEAE	Pourouma	Pourouma minor	0.44	26.7	10	639	424	398	162	194.36
P-16	48	LAURACEAE	Ocotea	Ocotea sp1	0.53	10.8	3	58	45	43	9	12.93
P-16	49	MYRTACEAE	Calyptranthes	Calyptranthes sp	0.78	24.2	7	496	580	541	163	196.13
P-16	50	FABACEAE	Inga	Inga thibaudiana	0.58	15.3	8	149	129	121	56	70.21
P-16	51	BIGNONIACEAE	Jacaranda	Jacaranda copaia	0.69	12.7	4	90	92	87	23	29.92
P-16	52	ARECACEAE	Iriartea	Iriartea deltoidea	0.46	27.7	9	698	482	454	163	195.24
P-17	1	MORACEAE	Pseudolmedia	Pseudolmedia laevigata	0.61	16.0	5	166	151	141	40	50.85
P-17	2	OLACACEAE	Minquartia	Minquartia guianensis	0.80	21.3	10	358	428	397	185_	221.14
P-17	3	MORACEAE	Ficus	Ficus maxima	0.37	97.1	21	7993	4378	###	###	3824.46
P-17	4	LECYTHIDACEAE	Eschweilera	Eschweilera coriacea	0.85	37.6	6	1447	1840	###	367	424.06
P-17	5	FABACEAE	Vataireopsis	Vataireopsis sp	0.64	10.8	3	58	56	53	11	15.65
P-17	6	SIPARUNACEAE	Siparuna	Siparuna decipiens	0.64	10.8	5	58	55	53 ⁻	19	25.40
P- <u>1</u> 7	7	ARECACEAE	Euterpe	Euterpe precatoria	0.41	11.9	3	76	46	43	9	12.21
P-17	8	ARECACEAE	Euterpe	Euterpe precatoria	0.41	14.0	3	116	71	66	12	16.55

P-17	9	SIPARUNACEAE	Siparuna	Siparuna decipiens	0.64	10.2	3	49	47	45	10	13.92
P-17	10	ARECACEAE	Oenocarpus	Oenocarpus mapora	0.65	10.5	3	53	52	49	11	14.96
P-17	11	ARECACEAE	Oenocarpus	Oenocarpus mapora	0.65	10.2	3	49	48	46	10	14.11
P-17	12	ARECACEAE	Oenocarpus	Oenocarpus mapora	0.65	10.5	3	53	52	49	11	14.96
P-17	13	BURSERACEAE	Protium	Protium sagotianum	0.56	16.9	2	192	160	149	16	21.66
P-17	14	MORACEAE	Brosimum	Brosimum lactescens	0.66	25.1	12	547	536	501	253	297.71
P-17	15	Malvaceae	Apeiba	Apeiba membranacea	0.28	14.6	3	131	54	51	9	12.44
P-17	16	RUBIACEAE	Semiphyllanthe	Semiphyllanthe megistocaula	0.65	20.4	7	317	307	285	96	118.18
P-17	17_	FABACEAE	Inga	Inga acrocephala	0.51	16.6	9	183	140	130	64	80.75
P-17	18	ARECACEAE	Euterpe	Euterpe precatoria	0.41	16.6	10	183	111	103	57	71.60
P-17	19	MYRISTICACEAE	Iryanthera	Iryanthera laevis	0.62	18.8	7	258	237	220	78	96.80
P-17	20_	MYRISTICACEAE	virola	Virola sebifera	0.46	30.2	11	867	589	561	233	275.25
P-17	21	ARECACEAE	Euterpe	Euterpe precatoria	0.41	10.8	2	58	35	33	5	6.89
P-17	22	MORACEAE	Pseudolmedia	Pseudolmedia laevis	0.62	51.6	20	2857	2637	###	###	1798.61
P-17	23	LECYTHIDACEAE	Eschweilera	Eschweilera coriacea	0.72	26.4	9	620	667	625	230	272.02
P-17	24_	MYRISTICACEAE	virola	Virola sebifera	0.46	18.5	6	245	166	155	47	60.39
P-17	25	SIPARUNACEAE	Siparuna	Siparuna sp	0.66	46.5	12	2309	2261	###	866	959.80
P-17	26	ARECACEAE	Oenocarpus	Oenocarpus bataua	0.65	22.6	11	416	404	375	186	221.83
P-17	27	RUBIACEAE	Amaioua	Amaioua guianensis	0.63	12.1	5	78	73	69	23	30.67
P-17	28	OLACACEAE	Heisteria	Heisteria nitida	0.70	30.2	12	867	911	868	394	452.91
P-17	29	MORACEAE	Brosimum	Brosimum rubescens	0.83	11.8	3	7.3	90	85	17	23.35
P-17	30	SAPOTACEAE	Chrysophyllum	Chrysophyllum sp	0.76	48.1	19	2477	2808	###	###	1822.31
P-17	31	ARECACEAE	Euterpe	Euterpe precatoria	0.41	14.2	13	121	73	69	54	68.62
P-17	32	ARECACEAE	Euterpe	Euterpe precatoria	0.41	13.4	16	103	62	59	59	74.58
P-17	33	VOCHYSIACEAE	Qualea	Qualea grandiflora	0.65	65.3	24	4438	4284	###	###	3496.02
P-17	34	SIPARUNACEAE	Siparuna	Siparuna decipiens	0.64	20.1	9	305	291	270	118	143.90
P-17	35	LAURACEAE	Ocotea	Ocotea oblonga	0.39	16.9	9	192	111	103	50	63.83
P-17	36	PUTRANGIVACEAE	Drypetes	Drypetes gentryi	0.73	44.2	20	2080	2266	###	###	1573.41

P-17	37	BURSERACEAE	Protium	Protium amazonicum	0.60	12.6	8	88	79	74	39	50.09
P-17	38	SIPARUNACEAE	Siparuna	Siparuna cuspidata	0.66	11.5	3	68	66	63	13	17.79
P-17	39	MALVACEAE	Matisia	Matisia malacocalyx	0.48	11.8	5	73	53	50	17	22.88
P-17	40	ARECACEAE	Euterpe	Euterpe precatoria	0.46	12.4	7	84	58	55	25	33.35
P-17	41	LECYTHIDACEAE	Eschweilera	Eschweilera coriacea	0.85	36.9	17	1391	1769	###	###	1106.54
P-17	42	ANNONACEAE	Xylopia	Xylopia sp	0.58	14.3	6	124	107	100	36	46.68
P-17	43	VIOLACEAE	Leonia	Leonia glycycarpa	0.65	13.1	5	96	93	88	28	36.72
P-17	44	URTICACEAE	Cecropia	Cecropia sciadophylla	0.39	27.4	15	678	391	368	222	261.91
P-17	45	EUPHORBIACEAE	Alchornea	Alchornea sp	0.42	11.1	6	62	38	36	16	20.90
P-17	46	ANNONACEAE	Guatteria	Guatteria olivacea	0.46	11.1	7	63	43	41	20	26.74
P-17	47	BIGNONIACEAE	Jacaranda	Jacaranda copaia	0.35	21.0	13	344	182	169	103	126.74
P-17	48	FABACEAE	Tachigali	Tachigali vasquezii	0.56	29.9	17	845	704	670	433	496.09
P-17	49	ANACARDIACEAE	Astronium	Astronium graveolens	0.86	27.4	18	678	870	819	591	666.76
P-17	50	ARECACEAE	Iriartea	Iriartea deltoidea	0.28	24.8	4	530	218	203	35	44.71
P-17	51	SAPOTACEAE	Chrysophyllum	Chrysophyllum sp	0.76	33.4	14	1103	1250	###	605	682.09
P-17	52	CELASTRACEAE	Cheiloclinium	Cheiloclinium cognatum	0.71	12.4	4	84	90	85	22	29.58
P-17	53	ARECACEAE	Euterpe	Euterpe precatoria	0.41	15.3	5	147	89	84	24	31.77
P-17	54	RUTACEAE	Galipea	Galipea trifoliata	1.00	11.1	2	63	93	89	13	17.10
P-17	55	FABACEAE	Vataireopsis	Vataireopsis sp	0.64	14.3	2	124	119	111	13	18.14
P-18	1	SABIACEAE	Meliosma	Meliosma herbertii	0.52	24.2	8	496	381	355	123	149.40
P-18	2	FABACEAE	Talisia	Talisia sp1	0.84	25.1	11	547	686	641	298	346.98
P-18	3	FABACEAE	Pseudopiptadenia	Pseudopiptadenia suaveolens	0.68	60.5	19	3876	3932	###	###	2538.86
P-18	4	URTICACEAE	Pourouma	Pourouma minor	0.44	47.4	12	2409	1599	###	611	688.69
P-18	5	ARECACEAE	Euterpe	Euterpe precatoria	0.41	15.0	13	139	84	79	60	75.82
P-18	6	MORACEAE	Pseudolmedia	Pseudolmedia laevigata	0.63	25.8	10	583	548	513	213	252.35
P-18	7	ARECACEAE	Euterpe	Euterpe precatoria	0.41	16.2	12	173	105	98	65	82.08
P-18	8	MORACEAE	Helicostylis	Helicostylis tomentosa	0.61	23.4	10	455	414	385	170	203.35
P-18	9	OCHNACEAE	Ouratea	Ouratea sp	0.73	15.7	2	157	171	159	18	24.17

P-18	10	MORACEAE	Helicostylis	Helicostylis tomentosa	0.63	25.8	13	583	545	511	276	322.79
P-18	11	MORACEAE	Brosimum	Brosimum lactescens	0.66	16.9	6	193	189	176	57	72.21
P-18	12	SAPOTACEAE	Pouteria	Pouteria krukovii	0.78	16.6	8	183	214	199	87	108.11
P-18	13	BURSERACEAE	Protium	Protium amazonicum	0.60	10.2	5	49	44	42	16	21.23
P-18	14	SIPARUNACEAE	Siparuna	Siparuna sp	0.66	16.2	4	173	170	159	35	45.50
P-18	15	CLUSIACEAE	Symphonia	Symphonia globulifera	0.62	38.8	15	1561	1441	###	713	797.24
P-18	16	MELIACEAE	Trichilia	Trichilia maynasiana	0.69	21.0	7	344	354	329	109	132.86
P-18	17	MONIMIACEAE	Mollinedia	Mollinedia killipii	0.67	14.6	2	131	130	122	15	19.57
P-18	18	ARECACEAE	Iriartea	Iriartea deltoidea	0.28	29.3	15	801	329	312	181	215.55
P-18	19	CLUSIACEAE	Symphonia	Symphonia globulifera	0.62	11.0	2	61	56	53	8	10.62
P-18	20	FABACEAE	Talisia	Talisia sp1	0.84	19.4	7	280	351	326	113	137.89
P-18	21	MYRISTICACEAE	Iryanthera	Iryanthera laevis	0.62	19.4	8	280	257	238	94	116.38
P-18	22	SIPARUNACEAE	Siparuna	Siparuna decipiens	0.64	13.7	2	109	105	98	12	16.60
P-18	23	MORACEAE	Clarisia	Clarisia racemosa	0.59	86.6	22	6896	6026	###	###	5014.63
P-18	24	LECYTHIDACEAE	Eschweilera	Eschweilera coriacea	0.85	39.2	18	1590	2022	###	###	1306.37
P-18	25	ARECACEAE	Iriartea	Iriartea deltoidea	0.28	10.5	2	53	22	21	3	4.49
P-18	26	MYRISTICACEAE	virola	Virola sebifera	0.50	13.2	4	100	75	71	18	23.94
P-18	27	LAURACEAE	Ocotea	Ocotea bofo	0.53	42.0	18	1860	1457	###	850	942.48
P-18	28	MELIACEAE	Trichilia	Trichilia maynasiana	0.69	21.6	8	372	383	356	132	159.70
P-18	29	MORACEAE	Brosimum	Brosimum lactescens	0.66	21.5	7	365	357	332	108	132.06
P-18	30	MORACEAE	Brosimum	Brosimum lactescens	0.66	19.7	3	292	286	265	39	50.13
P-18	31	URTICACEAE	Cecropia	Cecropia sciadophylla	0.39	52.2	17	2928	1690	###	913	1008.81
P-18	32	CHRYSOBALANACEAE	Hirtella	Hirtella excelsa	0.80	25.5	9	565	674	631	238	280.03
P-18	33	SAPOTACEAE	Pouteria	Pouteria trilocularis	0.67	22.0	8	386	388	360	132	160.11
P-18	34	MYRISTICACEAE	Iryanthera	Iryanthera laevis	0.62	12.9	2	93	85	81	10	14.25
P-18	35	APOCYNACEAE	Aspidosperma	Aspidosperma parvifolium	0.78	21.6	5	372	434	403	93	114.88
P-18	36	ARECACEAE	Iriartea	Iriartea deltoidea	0.46	26.1	8	602	415	389	128	155.92
P-18	37	EUPHORBIACEAE	Conceveiba	Conceveiba guianensis	0.54	14.3	3	124	100	94	17	22.78

		1	1 *	1_	1 -	1 1			1		l	1 1
P-18	38	ARECACEAE	Euterpe	Euterpe precatoria	0.41	18.8	12	256	155	144	88	108.33
P-18	39	SAPOTACEAE	Chrysophyllum	Chrysophyllum sp	0.76	35.3	12	1256	1425	###	580_	654.72
P-18	40	MELIACEAE	Guarea	Guarea gomma	0.65	10.2	3	49	48	46	10	14.11
P-18	41	ANNONACEAE	Onychopetalum	Onychopetalum krukoffii	0.63	36.3	13	1337	1261	###	551	624.12
P-18	42	RUBIACEAE	Amaioua	Amaioua guianensis	0.63	13.9	6	114	106	100	37	47.41
P-18	43	MORACEAE	Pseudolmedia	Pseudolmedia laevis	0.62	25.5	12	565	522	488	245	288.49
P-18	44	OPILIACEAE	Agonandra	Agonandra silvatica	0.83	16.0	3	167	207	193	33	42.17
P-18	45	PUTRANGIVACEAE	Drypetes	Drypetes gentryi	0.73	14.3	5	124	135	_127	38	49.07
P-18	46	FABACEAE	Tachigali	Tachigali vasquezii	0.56	15.0	7	139	116	109	45	56.93
P-18	47	EUPHORBIACEAE	Pausandra	Pausandra trianae	0.59	15.9	3	164	145	135	23	30.11
P-19	1_	MYRISTICACEAE	Iryanthera	Iryanthera juruensis	0.63	13.1	3	97	92	87	17	22.27
P-19	2	PUTRANGIVACEAE	Drypetes	Drypetes gentryi	0.73	14.9	2	138	150	140	17	22.10
P-19	3	NYCTAGINACEAE	Neea	Neea spruceana	0.68	25.8	4	583	589	551	92	112.96
P-19	4	SAPOTACEAE	Chrysophyllum	Chrysophyllum sp	0.76	20.4	6	317	360	334	96	118.57
P-19	5	NYCTAGINACEAE	Neea	Neea spruceana	0.68	21.0	3	344	347	322	46	58.16
P-19	6	SAPOTACEAE	Pouteria	Pouteria filipis	0.96	40.7	12	1738	2501	###	979	1077.84
P-19	7	MYRISTICACEAE	virola	Virola sebifera	0.46	19.7	13	292	198	184	117	143. <u>1</u> 7
P-19	8	ARECACEAE	Iriartea	Iriartea deltoidea	0.28	20.1	9	305	125	116	51	64.44
P-19	9	ARECACEAE	Euterpe	Euterpe precatoria	0.41	12.2	7	79	48	46	21	28.34
P-19	10	MYRISTICACEAE	virola	Virola sebifera	0.46	20.4	9	317	216	200	87	107.17
P-19	11	MELIACEAE	Guarea	Guarea kunthiana	0.62	20.7	5	331	304	282	67	84.11
P-19	12	BURSERACEAE	Protium	Protium sagotianum	0.56	17.1	6	200	167	155	50	63.45
P-19	13	ARECACEAE	Iriartea	Iriartea deltoidea	0.28	29.0	9	780	321	304	106	129.80
P-19	14	MYRISTICACEAE	Iryanthera	Iryanthera laevis	0.62	18.8	10	256	235	218	111	135.08
P-19	15	ARECACEAE	Euterpe	Euterpe precatoria	0.41	13.7	10	109	66	62	39	49.86
P-19	16	MONIMIACEAE	Mollinedia	Mollinedia killipii	0.67	12.1	3	78	78	74	15	20.01
P-19	17	MORACEAE	Perebea	Perebea xanthochyma	0.56	26.7	9	639	534	502	184	219.01
P-19	18	MORACEAE	Pseudolmedia	Pseudolmedia laevis	0.62	10.5	3	53	49	47	10	14.27

P-19	19	SABIACEAE	Meliosma	Meliosma herbertii	0.52	27.6	9	692	532	501	180	214.78
P-19	20	MYRISTICACEAE	virola	virola elongata	0.52	33.1	10	1078	842	814	292	340.93
P-19	21	URTICACEAE	Cecropia	Cecropia sciadophylla	0.37	33.4	12	1103	610	591	253	297.56
P-19		BURSERACEAE	 	<u> </u>	0.56			331	276			134.43
H			Tetragastris	Tetragastris altissima	 	20.7	9			257	110	+
P-19	23	FABACEAE	Vataireopsis	Vataireopsis sp	0.64	10.8	9	58	56	53	34	44.54
P-19	24	MORACEAE	Helicostylis	Helicostylis tomentosa	0.63	39.2	12	1590	1487	###	587	662.70
P-19	25	MORACEAE	Pseudolmedia	pseudolmedia laevis	0.62	11.5	9	68	62	. 59	37	47.95
P-19	26	BURSERACEAE	Protium	Protium sagotianum	0.56	20.7	9	331	275	255	109	133.82
P-19	27	SIPARUNACEAE	Siparuna	Siparuna decipiens	0.64	12.4	3	84	80	76	15	20.28
P-19	28	MYRISTICACEAE	virola	virola elongata	0.52	29.6	12	823	643	610	280	327.80
P-19	29	MALVACEAE	Huberodendron	Huberodendron swietenioides	0.56	63.7	23	4250	3573	###	###	2807.85
P-19	30	ELAEOCARPACEAE	Sloanea	Sloanea sinemariensis	0.81	14.6	3	131	159	149	27	34.69
P-19	31	LAURACEAE	Beilschmiedia	Beilschmiedia sp	0.56	10.2	2	49	41	39	6	8.37
P-19	32	MORACEAE	Naucleopsis	Naucleopsis krukovii	0.65	11.5	3	68	66	62	13	17.67
P-19	33	LAURACEAE	Ocotea	Ocotea sp1	0.53	20.4	3	317	249	231	33	43.11
P-19	34	BORAGINACEAE	Cordia	Cordia sp1	0.52	13.6	1	107	83	78	5	6.93
P-19	35	SABIACEAE	Meliosma	Meliosma herbertii	0.52	13.4	1	104	80	75	5	6.73
P-19	36	MORACEAE	Pseudolmedia	Pseudolmedia laevis	0.62	13.2	1	99	91	86	5	7.72
P-19	37	CHRYSOBALANACEAE	Licania	Licania sp	0.82	54.1	11	3142	3842	###	###	1458.27
P-19	38	LAURACEAE	Endlicheria	Endlicheria welliamsii	0.47	15	3	139	98	91	16	21.55
P-19	39	SABIACEAE	Meliosma	Meliosma herbertii	0.52	19.4	3	280	215	200	30	38.63
P-19	40	MONIMIACEAE	Mollinedia	Mollinedia killipii	0.67	11.4	4	66	66	62	18	23.37
P-19	41	SALICACEAE	Casearia	Casearia sp2	0.67	19	4	265	266	247	50	62.95
P-19	42	MELIACEAE	Cedrela	Cedrela odorata	0.46	12.4	4	84	57	54	14	19.28
P-19	43	NYCTAGINACEAE	Neea	Neea spruceana	0.68	19.1	7	268	270	251	88	108.68
P-19	44	BURSERACEAE	Tetragastris	Tetragastris altissima	0.71	21.6	8	372	393	365	135	163.63
P-19	45	MORACEAE	Pseudolmedia	Pseudolmedia laevis	0.62	12.1	6	78	72	68	28	36.12
P-19	46	MYRISTICACEAE	Iryanthera	Iryanthera laevis	0.62	30.2	12	867	796	758	344	398.06

P-19	47	MORACEAE	Pseudolmedia	Pseudolmedia laevis	0.62	18.5	6	245	226	210	64	80.82
P-19	48	ARECACEAE	Oenocarpus	Oenocarpus bataua	0.65	18.5	3	245	237	221	34	43.80
P-19	49	MELIACEAE	Guarea	Guarea macrophylla	0.65	58.6	13	3653	3517	###	###	1583.03
P-19	50	LAURACEAE	Endlicheria	Endlicheria formosa	0.42	21.6	11	372	234	217	110	135.07
P-19	51	APOCYNACEAE	Aspidosperma	Aspidosperma parvifolium	0.78	44.2	17	2080	2425	###	###	1437.60
P-19	52	NYCTAGINACEAE	Neea	Neea spruceana	0.68	21.3	7	358	361	335	110	134.10
P-19	53	MORACEAE	Pseudolmedia	Pseudolmedia macrophylla	0.66	15	4	139	137	128	30	39.17
P-19	54	ARECACEAE	Euterpe	Euterpe precatoria	0.41	13.5	3	106	64	61	11	15.49
P-2	1	SIPARUNACEAE	Siparuna	Siparuna decipiens	0.64	15	1	139	133	125	7	10.17
P-2	2_	ELAEOCARPACEAE	Sloanea	Sloanea sinemariensis	0.81	25.8	3	583	704	659	82	101.89
P-2	3	CHRYSOBALANACEAE	Hirtella	Hirtella excelsa	0.80	12.7	4	90	107	101	26	34.56
P-2	4	ARECACEAE	Iriartea	iriartea deltoidea	0.28	20.4	4	317	131	121	23	30.68
P-2	5	MYRISTICACEAE	Iryanthera	Iryanthera laevis	0.62	28.6	10	759	697	659	257	301.88
P-2	6	BURSERACEAE	Tetragastris	Tetragastris altissima	0.71	36	11	1310	1384	###	513	582.90
P-2	7	ARECACEAE	Iriartea	iriartea deltoidea	0.28	27.4	9	678	279	262	95	116.55
P-2	8	EBENACEAE	Diospyros	Diospyros capreifolia	0.73	23.2	9	447	487	453	181	215.78
P-2	9	SIPARUNACEAE	Siparuna	Siparuna decipiens	0.64	12.1	1	78	75	71	5	6.78
P-2	10	ARECACEAE	Euterpe	euterpe precatoria	0.41	16.9	13	192	117	109	77	95.32
P-2	11	LAURACEAE	Endlicheria	Endlicheria formosa	0.42	65.3	20	4438	2788	###	###	1951.88
P-2	12	ARECACEAE	Euterpe	euterpe precatoria	0.41	16.3	14	175	106	99	77	95.77
P-2	13	MORACEAE	Pseudolmedia	Pseudolmedia laevis	0.62	51.8	22	2885	2663	###	###	1988.04
P-2	14	LECYTHIDACEAE	Eschweilera	Eschweilera coriacea	0.85	14.6	3	131	167	157	28	36.45
P-2	15	SAPOTACEAE	Pouteria	Pouteria sp	0.78	36.9	15	1391	1626	###	816	906.57
P-2	16	MONIMIACEAE	Mollinedia	Mollinedia killipii	0.67	10.4	3	53	52	50	11	15.12
P-2	17	ARECACEAE	Euterpe	euterpe precatoria	0.41	14	8	116	71	66	32	42.12
P-2	18	FABACEAE	Inga	Inga auristellae	0.58	24.7	7	523	452	422	126	153.13
P-2	19	LECYTHIDACEAE	Eschweilera	Eschweilera coriacea	0.85	79.6	20	6113	7774	###	###	5575.19
P-2	20	MELIACEAE	Trichilia	Trichilia maynasiana	0.69	21.3	9	358	369	342	144	173.69

P-2	21	URTICACEAE	Pourouma	Pourouma minor	0.44	10.5	4	53	35	34	10	13.71
P-2	22	Malvaceae	Apeiba	Apeiba membranacea	0.28	16.2	1	173	71	67	4	5.32
P-2	23	SABIACEAE	Meliosma	Meliosma herbertii	0.52	31.4	12	949	729	698	310	360.85
P-2	24	MYRISTICACEAE	virola	Virola elongata	0.52	15.6	3	156	122	114	19	25.84
P-2	25	SIPARUNACEAE	Siparuna	Siparuna cuspidata	0.66	17.1	4	198	194	180	39	49.93
P-2	26	BURSERACEAE	Tetragastris	Tetragastris panamensis	0.73	19.4	5	280	306	284	70	87.83
P-2	27	SIPARUNACEAE	Siparuna	Siparuna decipiens	0.64	16.9	3	192	184	171	28	36.38
P-2	28	MORACEAE	Clarisia	Clarisia racemosa	0.59	78	19	5931	5182	###	###	3573.95
P-2	29	LAURACEAE	Aniba	Aniba sp	0.67	10.8	1	58	58	55	4	5.69
P-2	30	LAURACEAE	Beilschmiedia	Beilschmiedia sp	0.56	14	4	116	98	92	23	29.69
P-2	31	ARECACEAE	Euterpe	euterpe precatoria	0.41	12.9	3	93	56	53	10	14.14
P-2	32	SABIACEAE	Meliosma	Meliosma herbertii	0.52	38.8	11	1561	1200	###	435	498.28
P-2	33	ARECACEAE	Euterpe	euterpe precatoria	0.41	14	9	116	71	66	37	47.12
P-2	34	RUBIACEAE	Psychotria	Psychotria sp	0.52	11.5	6	68	53	50	21	27.63
P-2	35	SALICACEAE	Casearia	Casearia sp2	0.67	12.5	5	86	87	82	27	35.17
P-2	36	MORACEAE	Clarisia	Clarisia racemosa	0.59	12.4	1	84	73	69	5	6.54
P-2	37	MYRTACEAE	Calyptranthes	Calyptranthes sp	0.78	12.1	1	78	92	87	6	8.21
P-2	38	MORACEAE	Brosimum	Brosimum lactescens	0.66	25.5	6	565	553	517	130	157.60
P-2	39	LAURACEAE	Beilschmiedia	Beilschmiedia sp	0.56	24.5	12	513	431	402	207	245.33
P-2	40	SIPARUNACEAE	Siparuna	Siparuna decipiens	0.64	11.5	3	68	65	61	13	17.41
P-2	41	MELIACEAE	Guarea	Guarea macrophylla	0.65	33.4	14	1103	1061	###	514	583.67
P-2	42	LAURACEAE	Beilschmiedia	Beilschmiedia sp	0.56	16.6	9	186	156	145	72	89.30
P-2	43	FABACEAE	Tachigali	Tachigali vasquezii	0.56	60.2	7	3839	3201	###	721	805.93
P-2	44	MELASTOMATACEAE	Miconia	Miconia sp	0.62	12.4	5	84	77	73	24	31.88
P-2	45	MYRISTICACEAE	Iryanthera	Iryanthera juruensis	0.63	14.4	6	125	118	111	40	51.41
P-2	46	NYCTAGINACEAE	Neea	Neea spruceana	0.68	23.9	8	479	484	451	157	188.77
P-2	47	URTICACEAE	Pourouma	Pourouma minor	0.44	26.4	10	620	412	386	158	189.98
P-2	48	ARECACEAE	Euterpe	euterpe precatoria	0.41	15	15	139	84	79	70	86.89

P-20	1	SAPOTACEAE	Chrysophyllum	Chrysophyllum sp	0.76	60.5	21	3876	4395	###	###	3104.73
P-20	2	MYRISTICACEAE	Iryanthera	Iryanthera juruensis	0.63	16.9	4	192	182	169	37	47.32
P-20	3	RUBIACEAE	Alseis	Alseis peruviana	0.65	41.4	8	1798	1745	###	454	518.30
P-20	4	MORACEAE	Pseudolmedia	Pseudolmedia laevis	0.62	12.7	4	90	83	78	20	27.07
P-20	5	CLUSIACEAE	Symphonia	Symphonia globulifera	0.62	10.2	8	50	46	44	26	34.67
P-20	6	LAURACEAE	Beilschmiedia	Beilschmiedia sp	0.56	12.5	1	85	72	68	4	6.36
P-20	7	MELIACEAE	Trichilia	Trichilia maynasiana	0.69	12	3	77	80	75	15	20.51
P-20	8	SAPOTACEAE	Micropholis	Micropholis egensis	0.60	13.1	1	96	86	81	5	7.36
P-20	9	FABACEAE	Dialium	Dialium guianense	0.89	20.1	4	305	405	376	73	90.97
P-20	10	ARECACEAE	Iriartea	Iriartea deltoidea	0.28	28.6	12	759	312	295	138	167.15
P-20	11	MYRISTICACEAE	Iryanthera	Iryanthera juruensis	0.63	15.3	3	147	139	130	23	29.80
P-20	12	RUBIACEAE	Alseis	Alseis peruviana	0.65	25.6	5	571	554	518	108	132.36
P-20	13	ARECACEAE	Iriartea	Iriartea deltoidea	0.28	27.7	12	698	287	270	129	156.70
P-20	14	MORACEAE	Brosimum	Brosimum rubescens	0.83	11.4	1	67	82	. 78	5	7.70
P-20	15	MORACEAE	Pseudolmedia	Pseudolmedia macrophylla	0.66	30.1	12	856	843	802	365	421.59
P-20	16	STAPHYLLEACEAE	Turpinia	Turpinia occidentalis	0.34	21.3	9	358	182	169	71	88.53
P-20	17	CHRYSOBALANACEAE	Hirtella	Hirtella pilosissima	0.88	10.2	3	49	65	62	14	18.83
P-20	18	MORACEAE	Brosimum	Brosimum alicastrum	0.63	45.2	21	2177	2031	###	###	1480.75
P-20	19	OCHNACEAE	Ouratea	Ouratea sp	0.73	26.2	4	609	660	618	102	124.85
P-20	20	BURSERACEAE	Tetragastris	Tetragastris altissima	0.71	17.4	1	208	220	205	11	14.87
P-20	21	MORACEAE	Pseudolmedia	Pseudolmedia macrophylla	0.66	25.5	9	565	557	521	196	233.43
P-20	22	MORACEAE	Brosimum	Brosimum alicastrum	0.63	58.9	21	3690	3442	###	###	2450.57
P-20	23	ARECACEAE	Iriartea	Iriartea deltoidea	0.28	25.5	16	565	232	217	146	175.65
P-20	24	VIOLACEAE	Gloeospermum	Gloeospermum sp	0.65	13.2	3	99	96	91	17	23.10
P-20	25	MORACEAE	Brosimum	Brosimum alicastrum	0.63	58.9	22	3690	3442	###	###	2561.56
P-20	26	RHIZOPHORACEAE	Cassipourea	Cassipourea peruviana	0.82	10.2	3	49	60	58	13	17.61
P-20	27	SALICACEAE	Casearia	Casearia pitumba	0.73	13.2	4	100	109	103	26	34.16
P-20	28	ARECACEAE	Iriartea	Iriartea deltoidea	0.28	15.4	1	152	62	58	3	4.83

P-20	29	MORACEAE	Brosimum	Brosimum alicastrum	0.63	22	9	386	360	335	138	167.18
P-20	30	BURSERACEAE	Protium	Protium sagotianum	0.56	22.9	10	432	359	334	149	179.75
P-20	31	EUPHORBIACEAE	Pausandra	Pausandra trianae	0.59	15.2	5	146	128	120	35	44.94
P-20	32	ARECACEAE	Euterpe	Euterpe precatoria	0.41	17.5	12	212	129	120	76	94.78
P-20	33	SIPARUNACEAE	Siparuna	Siparuna decipiens	0.64	10.3	1	51	49	46	3	5.01
P-20	34	MORACEAE	Brosimum	Brosimum alicastrum	0.63	12.4	3	84	78	74	15	19.81
P-20	35	EUPHORBIACEAE	Pausandra	Pausandra trianae	0.59	12.4	3	84	74	70	14	18.76
P-20	36	FABACEAE	Dialium	Dialium guianense	0.89	12.9	5	93	124	117	38	48.50
P-20	37	EUPHORBIACEAE	Pausandra	Pausandra trianae	0.59	10.7	. 1	56	49	47	3	4.96
P-20	38	MALVACEAE	Matisia	Matisia ochrocalyx	0.57	13.9	1	114	97	91	6	7.92
P-20	39_	MORACEAE	Pseudolmedia	Pseudolmedia macrophylla	0.66	15.6	5	156	153	143	41	52.44
P-20	40_	RUBIACEAE	Capirona	Capirona decorticans	0.59	31.5	12	958	848	812	360	415.86
P-20	41_	ARECACEAE	Iriartea	Iriartea deltoidea	0.28	18.4	3	241	99	92	14	19.15
P-20	42	MORACEAE	Pseudolmedia	Pseudolmedia macrophylla	0.66	19.1	10	268	264	245	123	149.21
P-20	43_	MORACEAE	Brosimum	Brosimum rubescens	0.83	12.7	1	90	111	105	7	9.52
P-20	44_	SIPARUNACEAE	Siparuna	Siparuna decipiens	0.64	11.9	3	75	72	68	14	18.73
P-20	45_	MORACEAE	Castilla	Castilla ulei	0.82	17.4	5	208	255	237	63	79.22
P-20	46_	EUPHORBIACEAE	Pausandra	Pausandra trianae	0.59	14	1	116	103	96	6	8.29
P-20	47	LAURACEAE	Beilschmiedia	Beilschmiedia sp	0.56	10.2	6	49	41	39	18	23.82
P-21	1_	LAURACEAE	Nectandra	Nectandra cissiflora	0.59	29.6	12	823	725	688	316	367.44
P-21	2	SALICACEAE	Laetia	Laetia procera	0.63	44.2	15	2080	1965	###	947	1044.61
P-21	3	SIPARUNACEAE	Siparuna	Siparuna sp	0.66	26.7	9	639	626	588	215	254.69
P-21	4	MYRISTICACEAE	virola	Virola calophylla	0.47	12.7	3	90	63	60	12	15.92
P-21	5	ARECACEAE	Euterpe	euterpe precatoria	0.41	18.5	9	245	148	138	64	79.74
P-21	6	SAPOTACEAE	Pouteria	Pouteria amygdaliforme	0.78	52.4	18	2948	3446	###	###	2099.37
P-21	7	RUBIACEAE	Bathysa	Bathysa peruviana	0.64	19.1	5	268	256	238	59	74.87
P-21	8	SABIACEAE	Meliosma	Meliosma herbertii	0.52	16.2	6	173	133	124	41	53.14
P-21	9	RUBIACEAE	Amaioua	Amaioua guianensis	0.63	21.3	_ 8	358	334	310	116	141.30

P-21	10	ANACARDIACEAE	Thyrsodium	Thyrsodium sp	0.65	32.8	12	1053	1014	978	424	485.87
P-21	11	MELIACEAE	Trichilia	Trichilia maynasiana	0.69	18.8	5	256	264	245	62	77.90
P-21	12	MELIACEAE	Trichilia	Trichilia maynasiana	0.69	12.7	6	90	93	88	34	44.21
P-21	13	MYRISTICACEAE	Iryanthera	Iryanthera laevis	0.62	33.1	12	1078	989	956	412	472.95
P-21	14	ARECACEAE	Oenocarpus	Oenocarpus bataua	0.65	16.2	7	173	168	157	61	76.82
P-21	15	ARECACEAE	Euterpe	euterpe precatoria	0.41	14.3	12	124	75	70	51	64.67
P-21	16	NYCTAGINACEAE	Neea	Neea spruceana	0.68	11.5	1	68	68	65	5	6.44
P-21	17	SIPARUNACEAE	Siparuna	Siparuna cuspidata	0.66	15.9	4	164	161	150	34	43.74
P-21	18	SIPARUNACEAE	Siparuna	Siparuna sp	0.66	14.5	1	129	126	119	7	9.86
P-21	19	URTICACEAE	Pourouma	Pourouma cecropiifolia	0.36	18.5	7	245	130	121	43	55.27
P-21	20	SABIACEAE	Meliosma	Meliosma herbertii	0.52	21.3	9	358	275	256	107	131.46
P-21	21	LAURACEAE	Ocotea	Ocotea oblonga	0.39	37.9	15	1475	848	845	423	484.46
P-21	22	ARECACEAE	Iriartea	iriartea deltoidea	0.28	29.3	7	801	329	312	84	104.32
P-21	23	MYRISTICACEAE	Iryanthera	Iryanthera laevis	0.62	15.4	5	152	139	130	37	48.07
P-21	24	APOCYNACEAE	Aspidosperma	Aspidosperma parvifolium	0.78	11.5	3	68	79	75	16	21.04
P-21	25	SALICACEAE	Casearia	Casearia pitumba	0.73	20.1	9	305	332	308	135	162.99
P-21	26	MELIACEAE	Trichilia	Trichilia maynasiana	0.69	16.9	7	192	198	185	70	87.49
P-21	27	EUPHORBIACEAE	Pausandra	Pausandra trianae	0.59	18.8	4	256	225	209	42	54.26
P-21	28	FABACEAE	Vataireopsis	Vataireopsis sp	0.64	10.6	3	55	53	50	11	15.12
P-21	29	EUPHORBIACEAE	Pausandra	Pausandra trianae	0.59	22.4	7	409	360	335	106	129.78
P-21	30	ARECACEAE	Iriartea	iriartea deltoidea	0.28	23.6	9	463	190	177	70	87.55
P-21	31	LAURACEAE	Endlicheria	Endlicheria rufaramula	0.50	17.4	9	209	157	147	70	87.50
P-21	32	RUBIACEAE	Bathysa	Bathysa obovata	0.64	12.7	4	90	86	81	21	27.97
P-21	33	FABACEAE	Senna	Senna silvestris	0.56	12.7	7	90	75	71	32	42.02
P-21	34	ARECACEAE	Iriartea	iriartea deltoidea	0.28	23.9	5	479	197	184	40	51.32
P-21	35	ARECACEAE	Euterpe	euterpe precatoria	0.41	16.6	10	183	111	103	57	71.60
P-21	36	SABIACEAE	Meliosma	Meliosma herbertii	0.52	29.9	11	845	649	617	258	303.27
P-21	37	URTICACEAE	Pourouma	Pourouma minor	0.44	12.7	8	90	60	56	29	38.26

P-21	38	BIGNONIACEAE	Jacaranda	Jacaranda copaia	0.35	18.8	11	256	135	126	70	87.32
P-21	39	EUPHORBIACEAE	Pausandra	Pausandra trianae	0.59	13.4	3	103	90	85	16	21.60
P-21	40	RUBIACEAE	Bathysa	Bathysa obovata	0.64	15.2	7	146	139	130	53	66.91
P-21	41	FABACEAE	Tachigali	Tachigali vasquezii	0.56	27.1	7	658	549	516	146	175.95
P-21	42	RUBIACEAE	Bathysa	Bathysa obovata	0.64	27.1	12	658	629	591	286	334.53
P-21	43	URTICACEAE	Pourouma	Pourouma minor	0.44	12.1	4	78	52	49	13	17.93
P-21	44	MYRISTICACEAE	Iryanthera	Iryanthera laevis	0.62	13.1	7	96	88	83	37	48.09
P-21	45	MALVACEAE	Theobroma	Theobroma speciosum	0.63	12.7	4	90	85	80	21	27.55
P-21	46	MYRISTICACEAE	Iryanthera	Iryanthera juruensis	0.63	11.7	3	71	67	63	13	17.78
P-21	47	ANNONACEAE	Oxandra	Oxandra major	0.75	32.8	16	1053	1176	###	655	735.65
P-21	48	RUBIACEAE	Bathysa	Bathysa obovata	0.64	12.2	1	79	76	72	5	6.84
P-21	49	RUBIACEAE	Bathysa	Bathysa obovata	0.64	21	6	344	329	305	86	106.79
P-21	50	LAURACEAE	Aniba	Aniba sp	0.67	12.7	3	90	89	84	16	22.09
P-21	51	ARECACEAE	Iriartea	iriartea deltoidea	0.28	28.8	10	772	317	300	117	142.30
P-21	52	EUPHORBIACEAE	Pausandra	Pausandra trianae	0.59	14.7	5	133	117	110	33	42.12
P-21	53	PUTRANGIVACEAE	Drypetes	Drypetes gentryi	0.73	13.4	7	103	112	105	47	59.27
P-21	54	SABIACEAE	Meliosma	Meliosma herbertii	0.52	28.6	9	759	583	552	194	230.61
P-21	55	EUPHORBIACEAE	Pausandra	Pausandra trianae	0.59	10.2	1	49	43	41	3	4.52
P-21	56	ARECACEAE	Euterpe	euterpe precatoria	0.41	17.5	12	212	129	120	76	94.78
P-21	57	MYRISTICACEAE	virola	Virola elongata	0.52	15.6	9	156	122	114	58	73.56
P-21	58	NYCTAGINACEAE	Neea	Neea spruceana	0.68	14	3	116	118	110	20	26.87
P-21	59	ARECACEAE	Euterpe	euterpe precatoria	0.41	15.5	14	152	92	86	69	86.72
P-21	60	ARECACEAE	Iriartea	iriartea deltoidea	0.28	24.5	10	513	211	197	84	104.39
P-3	1	FABACEAE	Vataireopsis	Vataireopsis sp	0.64	14	1	116	112	105	6	8.98
P-3	2	ARECACEAE	Euterpe	Euterpe precatoria	0.41	17.5	5	212	129	120	32	41.18
P-3	3	MORACEAE	Brosimum	Brosimum lactescens	0.66	36.6	15	1364	1334	###	671	752.71
P-3	4	SIPARUNACEAE	Siparuna	Siparuna cuspidata	0.66	11.9	_ 1	76	74	70	5	6.75
P-3	5	SABIACEAE	Meliosma	Meliosma herbertii	0.52	21.7	9	375	288	268	111	135.98

P-3	6	MORACEAE	Perebea	Perebea xanthochyma	0.56	37.2	15	1419	1186	###	594	669.52
P-3	7	NYCTAGINACEAE	Neea	Neea spruceana	0.68	14	3	116	118	110	20	26.87
P-3	8	LAURACEAE	Ocotea	Ocotea puberula	0.43	16.7	4	187	120	112	25	32.21
P-3	9	SIPARUNACEAE	Siparuna	Siparuna cuspidata	0.66	14.8	5	135	132	124	37	47.11
P-3	10	BURSERACEAE	Protium	Protium aracouchini	0.49	15	1	139	102	95	6	7.88
P-3	11	BORAGINACEAE	Cordia	Cordia bicolor	0.48	19.9	10	299	212	197	96	118.24
P-3	12	ARECACEAE	Iriartea	Iriartea deltoidea	0.28	26.4	10	620	255	239	98	120.43
P-3	13	CHRYSOBALANACEAE	Hirtella	Hirtella excelsa	0.80	31.8	12	981	1171	###	495	563.28
P-3	14	ARECACEAE	Euterpe	Euterpe precatoria	0.41	12.6	11	88	53	50	36	46.67
P-3	15_	MORACEAE	Perebea	Perebea xanthochyma	0.56	27.4	12	678	567	533	257	301.22
P-3	16	LAURACEAE	Ocotea	Ocotea sp1	0.53	14.7	1	133	104	98	6	8.14
P-3	17	STAPHYLLEACEAE	Turpinia	Turpinia occidentalis	0.34	10.7	1	57	29	27	2	2.95
P-3	18	MORACEAE	Ficus	Ficus sp	0.41	96.7	24	7952	4892	###	###	4812.59
P-3	19	BIGNONIACEAE	Tabebuia	Tabebuia chrysantha	1.00	17.8	3	223	331	308	48	61.45
P-3	20	ARECACEAE	Euterpe	Euterpe precatoria	0.41	10.9	1	58	35	34	2	3.58
P-3	21	BURSERACEAE	Protium	Protium aracouchini	0.49	12.7	1	89	65	61	4	5.74
P-3	22	CANNABACEAE	Celtis	Celtis schippii	0.62	22.4	12	409	376	349	190	225.90
P-3	23	LECYTHIDACEAE	Couratari	Couratari macrosperma	0.67	15.2	9	146	146	136	71	88.78
P-3	24	STAPHYLLEACEAE	Turpinia	Turpinia occidentalis	0.34	13.9	5	115	58	55	17	22.51
P-3	25	BURSERACEAE	Tetragastris	Tetragastris panamensis	0.73	33.7	11	1128	1232	###	467	532.99
P-3	26	ANNONACEAE	Fusaea	Fusaea longifolia	0.74	12.7	1	89	98	93	6	8.53
P-3	27	ARECACEAE	Euterpe	Euterpe precatoria	0.41	14.6	12	131	80	75	53	67.44
P-3	28	MYRISTICACEAE	Iryanthera	Iryanthera laevis	0.62	15.2	9	145	133	124	65	81.50
P-3	29_	MYRISTICACEAE	Iryanthera	Iryanthera juruensis	0.63	11.7	1	71	67	64	4	6.28
P-3	30	ARECACEAE	Euterpe	Euterpe precatoria	0.41	15	9	141	85	80	42	53.86
P-3	31	MORACEAE	Pseudolmedia	Pseudolmedia laevis	0.62	28.6	9	759	701	663	233	274.53
P-3	32	APOCYNACEAE	Aspidosperma	Aspidosperma parvifolium	0.78	14.6	7	130	151	142	59	74.56
P-3	33_	MYRTACEAE	Eugenia	Eugenia sp2	0.76	15	7	139	158	148	61	76.44

P-3	34	LECYTHIDACEAE	Couratari	Couratari macrosperma	0.67	25.3	12	554	554	518	262	306.91
P-3	35	SALICACEAE	Casearia	Casearia sp1	0.67	15.5	7	154	154	144	58	72.82
P-3	36	MYRISTICACEAE	Iryanthera	Iryanthera laevis	0.62	23.6	9	463	425	396	156	188.09
P-3	37	MELIACEAE	Guarea	Guarea kunthiana	0.62	22.6	9	416	383	356	144	174.16
P-3	38	SIPARUNACEAE	Siparuna	Siparuna decipiens	0.64	10.4	1	52	49	47	4	5.06
P-3	39	SIPARUNACEAE	Siparuna	Siparuna decipiens	0.64	10.2	1	49	47	45	3	4.89
P-3	40	URTICACEAE	Pourouma ·	Pourouma minor	0.44	29.6	10	823	546	518	198	235.93
P-3	41	OLACACEAE	Minquartia	Minquartia guianensis	0.80	27.7	12	698	833	785	375	432.62
P-3	42	FABACEAE	Apuleia	Apuleia leiocarpa	0.80	84.5	29	6671	7958	###	###	8383.98
P-3	43	URTICACEAE	Pourouma	Pourouma minor	0.44	19.7	10	292	194	180	88	109.00
P-3	44	MELIACEAE	Trichilia	Trichilia maynasiana	0.69	14	6	116	120	113	41	53.00
P-3	45	URTICACEAE	Pourouma	Pourouma guianensis	0.38	12.3	8	81	46	44	23	30.63
P-3	46	ARECACEAE	Iriartea	Iriartea deltoidea	0.28	24.5	15	513	211	197	126	153.58
P-3	47	URTICACEAE	Pourouma	Pourouma minor	0.44	43.4	12	2000	1327	###	513	582.85
P-3	48	SALICACEAE	Casearia	Casearia sp1	0.67	16.8	7	189	190	177	67	84.31
P-3	49	ARECACEAE	Iriartea	Iriartea deltoidea	0.28	21.6	9	372	153	142	59	74.52
P-3	50	SAPOTACEAE	Pouteria	Pouteria sp	0.78	11.1	1	63	73	70	5	7.02
P-3	51	ARECACEAE	Iriartea	Iriartea deltoidea	0.28	27.7	13	698	287	270	140	169.11
P-3	52	BIGNONIACEAE	Jacaranda	Jacaranda copaia	0.35	12.3	3	82	43	41	8	11.30
P-4	1	BURSERACEAE	Tetragastris	Tetragastris altissima	0.71	63	18	4175	4411	###	###	2711.28
P-4	2	URTICACEAE	Pourouma	Pourouma minor	0.44	32.1	12	1005	667	641	281	328.43
P-4	3	FABACEAE	Pseudopiptadenia	Pseudopiptadenia suaveolens	0.68	50.5	21	2737	2777	###	###	1979.23
P-4	4	MORACEAE	Pseudolmedia	Pseudolmedia macrophylla	0.66	14.5	5	128	126	119	35	45.73
P-4	5	FABACEAE	Tachigali	Tachigali vasquezii	0.56	60.7	22	3897	3250	###	###	2436.20
P-4	6	RUTACEAE	Galipea	Galipea trifoliata	1.00	16.4	1	179	266	248	14	18.51
P-4	7	LECYTHIDACEAE	Eschweilera	Eschweilera coriacea	0.85	27.2	5	666	847	797	160	192.58
P-4	8	MYRISTICACEAE	virola	Virola calophylla	0.47	28.6	10	759	535	506	197	234.69
P-4	9	CANNABACEAE	Celtis	Celtis schippii	0.62	14.1	8	119	109	102	50	63.38

P-4	10	SIPARUNACEAE	Siparuna	Siparuna cuspidata	0.66	12.1	3	78	77	72	15	19.72
P-4	11	ARECACEAE	Euterpe	Euterpe precatoria	0.41	13.9	7	114	69	65	28	36.45
P-4	12	ARECACEAE	Euterpe	Euterpe precatoria	0.41	17.1	12	198	120	112	72	90.24
P-4	13	BIGNONIACEAE	Jacaranda	Jacaranda copaia	0.35	11.8	1	73	38	36	2	3.66
P-4	14	MORACEAE	Helicostylis	Helicostylis tomentosa	0.63	28.6	11	759	710	671	288	336.49
P-4	15	MORACEAE	Maquira	Maquira guianensis	0.77	45.4	20	2201	2516	###	###	1732.03
P-4	16	ARECACEAE	Euterpe	Euterpe precatoria	0.41	17.5	10	212	129	120	63	79.67
P-4	17	URTICACEAE	Pourouma	Pourouma guianensis	0.38	14.1	7	118	67	63	27	35.09
P-4	18	URTICACEAE	Pourouma	Pourouma minor	0.44	22.3	15	401	266	247	169	202.06
P-4	19	BIGNONIACEAE	Jacaranda	Jacaranda copaia	0.35	34.4	12	1178	622	606	255	300.00
P-4	20	URTICACEAE	Pourouma	Pourouma minor	0.44	18.8	9	256	170	158	72	89.71
P-4	21	APOCYNACEAE	Aspidosperma	Aspidosperma parvifolium	0.78	11.1	3	63	73	69	15	19.94
P-4	22	ARECACEAE	Euterpe	Euterpe precatoria	0.41	17.2	14	202	123	114	86	105.99
P-4	23	ANNONACEAE	Annona	Annona sp2	0.44	19.4	5	280	185	172	42	54.36
P-4	24	SIPARUNACEAE	Siparuna	Siparuna cuspidata	0.66	16.9	3	192	188	175	28	37.16
P-4	25	ARECACEAE	Euterpe	Euterpe precatoria	0.41	16.2	16	173	105	98	87	107.95
P-4	26	MYRISTICACEAE	virola	Virola sebifera	0.46	21.3	7	355	241	224	73	91.53
P-4	27	MORACEAE	Pseudolmedia	Pseudolmedia laevis	0.62	13.1	4	96	89	84	21	28.38
P-4	28	SIPARUNACEAE	Siparuna	Siparuna decipiens	0.64	10.2	1	49	47	45	3	4.89
P-4	29	SABIACEAE	Meliosma	Meliosma herbertii	0.52	25.8	3	583	448	420	52	66.29
P-4	30	ARECACEAE	Euterpe	Euterpe precatoria	0.41	13.6	9	108	66	62	35	44.70
P-4	31	ARECACEAE	Euterpe	Euterpe precatoria	0.41	10.2	3	49	30	29	6	9.03
P-4	32	ARECACEAE	Euterpe	Euterpe precatoria	0.41	13.4	6	103	62	59	22	29.31
P-4	33	ARECACEAE	Euterpe	Euterpe precatoria	0.41	16.3	10	175	106	99	55	69.52
P-4	34	MALVACEAE	Matisia	Matisia malacocalyx	0.48	11.1	3	63	45	43	9	12.66
P-4	35	SAPOTACEAE	Micropholis	Micropholis guyanensis	0.66	22	5	386	379	352	81	100.21
P-4	36	ARECACEAE	Euterpe	Euterpe precatoria	0.41	13.4	9	103	62	59	33	43.12
P-4	37	VIOLACEAE	Rinoreocarpus	Rinoreocarpus ulei	0.65	14.3	7	124	120	112	47	60.39

P-4	38	ARECACEAE	Euterpe	Euterpe precatoria	0.41	12.9	5	93	56	53	17	22.99
P-4	39	MORACEAE	Naucleopsis	Naucleopsis krukovii	0.65	19.4	1	280	272	252	12	16.95
P-4	40	ARECACEAE	Euterpe	Euterpe precatoria	0.41	13.4	1	103	62	59	4	5.32
P-4	41	FABACEAE	Dussia	Dussia tessmannii	0.56	14.4	3	125	105	98	18	23.64
P-4	42	RUTACEAE	Galipea	Galipea trifoliata	1.00	10.9	1	59	88	83	6	8.46
P-4	43	ARECACEAE	Euterpe	Euterpe precatoria	0.41	14.5	8	128	77	73	35	44.89
P-4	44	MORACEAE	Pseudolmedia	Pseudolmedia macrophylla	0.66	28.9	12	774	762	722	336	389.89
P-4	45	MORACEAE	Pseudolmedia	Pseudolmedia laevigata	0.63	20.7	1	331	310	288	14	18.53
P-4	46	SAPOTACEAE	Chrysophyllum	Chrysophyllum sp	0.76	12.2	1	81	91	86	6	8.14
P-4	47	LAURACEAE	Aniba	Aniba panurensis	0.61	19.7	7	292	266	247	85	104.90
P-4	48	FABACEAE	Tachigali	Tachigali poeppigiana	0.56	17.1	4	198	165	154	33	42.91
P-4	49	ARECACEAE	Euterpe	Euterpe precatoria	0.41	15.7	6	159	97	90	31	39.93
P-4	50	OLACACEAE	Heisteria	Heisteria nitida	0.70	22.3	9	401	422	392	160	192.52
P-4	51	VIOLACEAE	Rinoreocarpus	Rinoreocarpus ulei	0.65	10.8	1	58	56	53	4	5.55
P-4	52	APOCYNACEAE	Aspidosperma	Aspidosperma macrocarpon	0.71	41.7	13	1829	1938	###	818	908.25
P-4	53	MELIACEAE	Guarea	Guarea gomma	0.65	25.8	10	583	566	530	220	260.37
P-4	54	MALVACEAE	Pterygota	Pterygota amazonica	0.56	48.6	20	2530	2115	###	###	1459.83
P-4	55	OLACACEAE	Heisteria	Heisteria nitida	0.70	21	9	344	362	336	143	172.11
P-4	56	BURSERACEAE	Protium	Protium aracouchini	0.49	13.7	4	109	80	75	19	24.89
P-4	57	CHRYSOBALANACEAE	Licania	Licania octandra	0.83	10.6	1	54	67	64	5	6.67
P-4	58	EBENACEAE	Diospyros	Diospyros capreifolia	0.73	33.7	12	1128	1229	###	508	577.37
P-4	59	ARECACEAE	Euterpe	Euterpe precatoria	0.41	15.3	9	147	89	84	44	55.61
P-4	60	SIPARUNACEAE	Siparuna	Siparuna decipiens	0.64	10.5	_1	53	- 51	49	4	5.18
P-4	61	BURSERACEAE	Tetragastris	Tetragastris altissima	0.71	46.5	7	2309	2439	###	545	617.44
P-4	62	ARECACEAE	Astrocaryum	Astrocaryum murumuru	0.51	13.9	5	115	87	82	25	33.01
P-4	63	MYRISTICACEAE	Iryanthera	Iryanthera juruensis	0.63	13.6	4	108	102	96	24	31.50
P-4	64	LECYTHIDACEAE	Eschweilera	Eschweilera coriacea	0.85	50.5	20	2737	3481	###	###	2342.88
P-4	65	MORACEAE	Pseudolmedia	Pseudolmedia laevis	0.62	25.5	10	565	522	488	204	242.52

P-4	66	BURSERACEAE	Tetragastris	Tetragastris panamensis	0.73	12.7	1	90	98	93	6	8.49
P-4	67	ARECACEAE	Euterpe	Euterpe precatoria	0.41	24.2	1	496	301	281	12	16.47
P-5	1	FABACEAE	Amburana	Amburana cearensis	0.52	12.4	6	84	66	62	25	32.41
P-5	2	FABACEAE	Cedrelinga	Cedrelinga cateniformis	0.50	12.7	5	90	68	64	21	27.55
P-5	3	URTICACEAE	Cecropia	Cecropia sciadophylla	0.39	10.2	6	50	29	28	12	16.86
P-5	4	FABACEAE	Amburana	Amburana cearensis	0.52	11.7	1	72	56	53	4	5.27
P-5	5	URTICACEAE	Cecropia	Cecropia ficifolia	0.27	35.5	18	1267	503	493	307	357.06
P-5	6	URTICACEAE	Cecropia	Cecropia sciadophylla	0.39	12.5	4	86	50	47	12	16.83
P-5	7	URTICACEAE	Cecropia	Cecropia sciadophylla	0.39	27.1	6	658	380	357	87	107.05
P-5	8	MORACEAE	Ficus	Ficus sp	0.41	22.8	3	425	262	243	33	42.40
P-5	9	APOCYNACEAE	Aspidosperma	Aspidosperma parvifolium	0.78	15.3	3	147	172	161	28	36.38
P-5	10	FABACEAE	Cedrelinga	Cedrelinga cateniformis	0.50	15	4	140	105	99	23	30.40
P-5	11	MYRISTICACEAE	Iryanthera	Iryanthera juruensis	0.63	17.2	5	202	191	178	48	60.65
P-5	12	ARECACEAE	Euterpe	Euterpe precatoria	0.41	15.2	11	146	88	83	53	66.78
P-5	13	RUTACEAE	Zanthoxylum	Zanthoxylum sp	0.61	14.5	7	128	118	110	46	58.79
P-5	14	URTICACEAE	Cecropia	Cecropia sciadophylla	0.39	15	5	141	81	76	22	29.35
P-5	15	MORACEAE	Perebea	Perebea guianensis	0.56	28.6	12	759	634	600	281	328.47
P-5	16	BIGNONIACEAE	Jacaranda	Jacaranda copaia	0.35	17.2	9	202	107	99	48	60.94
P-5	17	RUTACEAE	Zanthoxylum	Zanthoxylum sp	0.61	18.1	8	231	212	197	82	101.42
P-5	18	RUTACEAE	Zanthoxylum	Zanthoxylum sp	0.61	10.6	6	54	50	47	21	27.74
P-5	19	RUTACEAE	Zanthoxylum	Zanthoxylum sp	0.61	12.4	4	84	77	73	19	25.62
P-5	20	FABACEAE	Tachigali	Tachigali vasquezii	0.56	48.6	18	2530	2110	###	###	1317.64
P-5	21	MYRISTICACEAE	Iryanthera	Iryanthera juruensis	0.63	26.7	3	639	604	567	69	86.50
P-5	22	NYCTAGINACEAE	Neea	Neea spruceana	0.68	11.3	1	66	66	63	4	6.31
P-5	23	RUTACEAE	Zanthoxylum	Zanthoxylum sp	0.61	20.1	9	305	279	259	113	138.21
P-5	24	MORACEAE	Castilla	Castilla ulei	0.82	40.3	10	1695	2074	###	678	760.08
P-5	25	FABACEAE	Inga	Inga oerstediana	0.58	10.2	4	49	43	41	12	16.63
P-5	26	ARECACEAE	Euterpe	Euterpe precatoria	0.41	16.2	14	173	105	98	76	95.06

P-5	27	ARECACEAE	Euterpe	Euterpe precatoria	0.41	17.2	12	202	123	114	73	91.52
P-5	28	FABACEAE	Vataireopsis	Vataireopsis sp	0.64	16	5	166	159	149	42	53.45
P-5	29	MONIMIACEAE	Mollinedia	Mollinedia killipii	0.67	10.5	3	53	53	51	11	15.30
P-5	30	MORACEAE	Helicostylis	Helicostylis tomentosa	0.63	21.6	7	372	348	323	105	128.30
P-5	31	VIOLACEAE	Rinoreocarpus	Rinoreocarpus ulei	0.65	13.9	1	115	111	105	6	8.99
P-5	32	URTICACEAE	Cecropia	Cecropia sciadophylla	0.39	14.8	3	136	79	74	13	17.61
P-5	33	RUTACEAE	Zanthoxylum	Zanthoxylum sp	0.61	15.7	6	159	146	136	46	59.12
P-5	34	BURSERACEAE	Tetragastris	Tetragastris altissima	0.71	16.9	6	192	203	189	62	77.40
P-5	35	URTICACEAE	Cecropia	Cecropia sciadophylla	0.39	40.8	15	1746	1008	###	493	560.99
P-5	36	BURSERACEAE	Tetragastris	Tetragastris altissima	0.71	14.3	5	124	131	123	37	47.65
P-5	37	URTICACEAE	Cecropia	Cecropia ficifolia	0.27	31.4	11	949	377	361	147	177.07
P-5	38	APOCYNACEAE	Aspidosperma	Aspidosperma parvifolium	0.78	11.4	3	67	78	74	16	20.81
P-5	39	LAURACEAE	Aniba	Aniba panurensis	0.61	17.1	4	198	180	168	36	46.66
P-5	40	FABACEAE	Vataireopsis	Vataireopsis sp	0.64	12.7	1	90	86	81	5	7.49
P-5	41	MELIACEAE	Cabralea	Cabralea canjerana	0.53	29.9	7	845	671	638	170	203.48
P-5	42	URTICACEAE	Cecropia	Cecropia sciadophylla	0.39	11.5	4	68	39	37	10	14.17
P-5	43	BURSERACEAE	Trattinnickia	Trattinnickia aspera	0.46	12.7	1	90	62	58	4	5.47
P-5	44	MALVACEAE	Eriotheca	Eriotheca globosa	0.41	17.8	9	223	136	127	60	75.19
P-5	45	SIPARUNACEAE	Siparuna	Siparuna decipiens	0.64	15.2	3	144	138	129	22	29.64
P-5	46	FABACEAE	Tachigali	Tachigali poeppigiana	0.56	16.2	7	172	143	134	52	66.02
P-5	47	URTICACEAE	Cecropia	Cecropia sciadophylla	0.39	39.5	13	1619	935	941	399	458.81
P-5	48	URTICACEAE	Cecropia	Cecropia sciadophylla	0.39	40.3	12	1695	979	992	384	442.12
P-5	49	EUPHORBIACEAE	Glycydendron	Glycydendron amazonicum	0.68	62.4	22	4100	4167	###	###	3102.29
P-5	50	FABACEAE	Vataireopsis	Vataireopsis sp	0.64	22.9	7	432	413	384	120	146.33
P-5	51	CHRYSOBALANACEAE	Licania	Licania canescens	0.88	52	15	2908	3819	###	###	1945.84
P-5	52	RUTACEAE	Galipea	Galipea trifoliata	1.00	14	3	116	173	163	30	38.89
P-5	53	CLUSIACEAE	Symphonia	Symphonia globulifera	0.62	19.1	9	268	247	230	103	126.88
P-5	54	FABACEAE	Inga	Inga acrocephala	0.51	10.8	5	57	44	42	15	20.31

P-5	55	URTICACEAE	Pourouma	Pourouma minor	0.44	27.7	7	698	463	436	122	147.96
P-5	56	SIPARUNACEAE	Siparuna	Siparuna decipiens	0.64	18.5	4	245	234	217	44	56.80
P-5	57	MALVACEAE	Matisia	Matisia malacocalyx	0.48	15.4	1	151	109	102	6	8.24
P-6	1	ARECACEAE	Euterpe	Euterpe precatoria	0.41	14.3	6	124	75	70	25	33.43
P-6	2	ARECACEAE	Euterpe	Euterpe precatoria	0.41	16.6	7	183	111	103	40	50.98
P-6	3	MORACEAE	Pseudolmedia	Pseudolmedia laevigata	0.63	13.1	3	96	90	85	16	21.93
P-6	4	APOCYNACEAE	Tabernaemontana	Tabernaemontana cymosa	0.47	30.8	9	905	635	606	204	242.44
P-6	5	SABIACEAE	Meliosma	Meliosma herbertii	0.52	15.6	4	156	120	112	26	33.47
P-6	6	BURSERACEAE	Tetragastris	Tetragastris altissima	0.71	12.1	3	78	83	78	16	21.23
P-6	7	MORACEAE	Pseudolmedia	Pseudolmedia laevis	0.62	35.5	15	1268	1170	###	595	670.67
P-6	8	FABACEAE	Vataireopsis	Vataireopsis sp	0.64	10.7	1	56	53	51	4	5.34
P-6	9	ARECACEAE	Euterpe	Euterpe precatoria	0.41	12.1	9	78	48	45	27	35.64
P-6	10	MORACEAE	Brosimum	Brosimum lactescens	0.66	32.1	12	1005	983	945	414	475.32
P-6	11	MORACEAE	Clarisia	Clarisia biflora	0.47	68.4	21	4814	3410	###	###	2510.46
P-6	12	MORACEAE	Pseudolmedia	Pseudolmedia laevigata	0.63	21.3	9	358	336	312	131	159.03
P-6	13	VIOLACEAE	Leonia	Leonia glycycarpa	0.60	20.7	10	331	296	275	131	158.66
P-6	14	ARECACEAE	Iriartea	Iriartea deltoidea	0.28	21	9	344	141	131	. 56	70.41
P-6	15	LECYTHIDACEAE	Eschweilera	Eschweilera coriacea	0.85	60	14	3823	4862	###	###	2320.37
P-6	16	MORACEAE	Batocarpus	Batocarpus amazonicus	0.53	19.7	5	292	232	216	53	66.93
P-6	17	FABACEAE	Inga	Inga thibaudiana	0.58	13.1	3	96	83	78	15	20.28
P-6	18	Malvaceae	Apeiba	Apeiba membranacea	0.28	18.5	9	245	101	94	43	55.08
P-6	19	MORACEAE	Pseudolmedia	Pseudolmedia laevigata	0.63	18.8	5	256	240	223	57	71.33
P-6	20	BURSERACEAE	Protium	Protium sagotianum	0.56	42.3	10	1891	1573	###	509	578.41
P-6	21	SIPARUNACEAE	Siparuna	Siparuna decipiens	0.64	14.3	3	124	118	111	20	26.64
P-6	22	BURSERACEAE	Tetragastris	Tetragastris altissima	0.71	19.4	9	280	295	274	122	148.84
P-6	23	ARECACEAE	Euterpe	Euterpe precatoria	0.41	14.1	8	119	72	68	33	42.85
P-6	24	BURSERACEAE	Protium	Protium aracouchini	0.49	14	7	116	85	80	34	44.31
P-6	25	RUTACEAE	Galipea	Galipea trifoliata	1.00	13.1	3	96	143	135	26	34.00

P-6	26	MORACEAE	Brosimum	Brosimum lactescens	0.66	13.4	5	103	100	95	30	38.84
P-6	27	MORACEAE	Brosimum	Brosimum lactescens	0.66	31.2	9	935	914	875	292	341.25
P-6_	28	ARECACEAE	Iriartea	Iriartea deltoidea	0.28	25.8	9	583	240	224	84	103.99
P-6_	29	SALICACEAE	Casearia	Casearia sp2	0.67	13.1	5	97	98	92	29	38.29
P-6	30	LECYTHIDACEAE	Eschweilera	Eschweilera coriacea	0.85	14.6	3	131	167	157	28	36.45
P-6	31	MORACEAE	Brosimum	Brosimum lactescens	0.66	62.3	19	4084	3996	###	###	2591.58
P-6	32	ARECACEAE	Iriartea	Iriartea deltoidea	0.28	22.6	9	416	171	159	65	80.91
P-6	33	ARECACEAE	Iriartea	Iriartea deltoidea	0.28	21.3	7	358	147	137	45	57.03
P-6	34	BURSERACEAE	Tetragastris	Tetragastris panamensis	0.73	25	9	539	589	550	210	248.50
P-6	35	SIPARUNACEAE	Siparuna	Siparuna cuspidata	0.66	12.9	5	94	92	86	28	36.38
P-6	36	MELIACEAE	Trichilia	Trichilia maynasiana	0.69	20.1	5	305	314	291	71	88.26
P-6_	37	LAURACEAE	Aniba	Aniba panurensis	0.61	13.7	1	109	100	94	6	8.19
P-6	38	FABACEAE	Inga	Inga alba	0.59	20.7	1	331	289	269	13	17.32
P-6	39	SABIACEAE	Meliosma	Meliosma herbertii	0.52	54.3	8	3163	2431	###	619	696.59
P-6_	40	MORACEAE	Brosimum	Brosimum lactescens	0.66	35.8	13	1295_	1267	###	556	629.19
P-6	41	SAPOTACEAE	Chrysophyllum	Chrysophyllum sp	0.76	33.1	14	1078	1222	###	594	669.78
P-6_	42	LAURACEAE	Aniba	Aniba sp	0.67	10.2	3	49	49	47	11	14.44
P-6	43	RUTACEAE	Galipea	Galipea trifoliata	1.00	11.8	4	73	108	103	28	36.77
P-6	44	CHRYSOBALANACEAE	Hirtella	Hirtella excelsa	0.80	14.2	4	122	145	136	33	42.70
P-6	45	CHRYSOBALANACEAE	Licania	Licania octandra	0.83	21.3	9	358	441	409	172	205.90
P-6	46	FABACEAE	Vataireopsis	Vataireopsis sp	0.64	10.8	3	58	56	53	11	15.65
P-6	47	MORACEAE	Pseudolmedia	Pseudolmedia laevis	0.62	16.9	3	192	178	165	27	35.18
P-6_	48	APOCYNACEAE	Aspidosperma	Aspidosperma parvifolium	0.78	39.2	13	1590	1853	###	793	882.18
P-6	49	MORACEAE	Helicostylis	Helicostylis tomentosa	0.63	21	9	344	322	299	127	153.98
P-6	50	MALVACEAE	Theobroma	Theobroma cacao	0.42	10.2	2	49	31	29	4	6.33
P-6	51	MORACEAE	Pseudolmedia	Pseudolmedia laevigata	0.63	35.7	15	1283	1205	###	611	688.25
P-6	52	BURSERACEAE	Tetragastris	Tetragastris panamensis	0.73	18.1	6	234	255	237	74	91.82
P-6	53	MORACEAE	Pseudolmedia	Pseudolmedia laevigata	0.63	28.6	12	759	713	674	316	366.89

P-6	54	SIPARUNACEAE	Siparuna	Siparuna decipiens	0.64	13.1	2	96	92	87	11	15.16
P-6	55	NYCTAGINACEAE	Neea	Neea spruceana	0.68	10.2	2	49	50	47	7	9.96
P-6	56	MONIMIACEAE	Mollinedia	Mollinedia killipii	0.67	11.8	4	73	72	69	19	25.01
P-6	57	BURSERACEAE	Protium	Protium sagotianum	0.56	13.4	4	103	85	80	20	26.91
P-6	58	EUPHORBIACEAE	Conceveiba	Conceveiba guianensis	0.54	20.7	9	331	268	249	107	130.59
P-7	1	OCHNACEAE	Ouratea	Ouratea sp	0.73	15.6	6	156	169	158	54	68.26
P-7	2	FABACEAE	Inga	Inga thibaudiana	0.58	14.3	6	124	107	100	36	46.84
P-7	3	FABACEAE	Tachigali	Tachigali vasquezii	0.56	10.2	5	49	41	39	15	19.87
P-7	4	SIPARUNACEAE	Siparuna	Siparuna decipiens	0.64	13.1	6	96	92	87	33	43.16
P-7	5	MORACEAE	Pseudolmedia	Pseudolmedia laevis	0.62	32.1	11	1005	928	892	358	413.94
P-7	6	MYRISTICACEAE	Iryanthera	Iryanthera laevis	0.62	16.9	4	192	177	165	36	46.02
P-7	7	MORACEAE	Pseudolmedia	Pseudolmedia laevigata	0.63	23.9	13	479	450	419	237	279.80
P-7	8	MYRISTICACEAE	Iryanthera	Iryanthera laevis	0.62	18.5	9	245	225	209	96	118.27
P-7	9	ANACARDIACEAE	Astronium	Astronium graveolens	0.86	25.1	7	547	703	657	194	230.77
P-7	10	BURSERACEAE	Tetragastris	Tetragastris altissima	0.71	35.1	13	1238	1308	###	578	652.55
P-7	11	SIPARUNACEAE	Siparuna	Siparuna decipiens	0.64	16.9	1	194	186	173	9	12.87
P-7	12	MORACEAE	Pseudolmedia	Pseudolmedia laevis	0.62	18.5	9	245	226	210	97	118.90
P-7	13	MORACEAE	Pseudolmedia	Pseudolmedia laevigata	0.63	11.3	5	66	62	59	21	27.25
P-7	14	MYRISTICACEAE	Iryanthera	Iryanthera juruensis	0.63	17.8	8	223	211	196	82	101.68
P-7	15	MORACEAE	Brosimum	Brosimum lactescens	0.66	25.5	9	565	553	517	195	231.86
P-7	16	LAURACEAE	Nectandra	Nectandra cissiflora	0.59	45.1	19	2163	1905	###	###	1267.02
P-7	17	BURSERACEAE	Tetragastris	Tetragastris altissima	0.71	47	18	2361	2494	###	###	1548.95
P-7	18	Malvaceae	Apeiba	Apeiba membranacea	0.28	20.5	9	324	133	124	53	67.43
P-7	19	SAPOTACEAE	Pouteria	Pouteria torta	0.77	13.7	7	109	126	118	51	65.11
P-7	20	VIOLACEAE	Rinoreocarpus	Rinoreocarpus ulei	0.65	11.1	6	63	61	58	25	32.31
P-7	21	MYRISTICACEAE	virola	Virola elongata	0.52	27.1	12	658	514	483	234	276.19
P-7	22	MORACEAE	Brosimum	Brosimum lactescens	0.66	23.2	6	447	438	407	108	132.38
P-7	23	BURSERACEAE	Tetragastris	Tetragastris altissima	0.71	32.8	14	1057	1117	###	544	616.45

P-7	24	BURSERACEAE	Protium	Protium sagotianum	0.56	13.4	5	103	85	80	25	33.28
P-7	25	MORACEAE	Pseudolmedia	Pseudolmedia laevigata	0.63	15	7	139	131	122	50	63.73
P-7	26	Malvaceae	Apeiba	Apeiba membranacea	0.28	13.1	5	96	40	37	12	16.26
P-7	27	BURSERACEAE	Tetragastris	Tetragastris altissima	0.71	52.3	17	2938	3104	###	###	1799.50
P-7	28	ARECACEAE	Euterpe	euterpe precatoria	0.41	14	10	116	71	66	41	52.09
P-7	29	SABIACEAE	Meliosma	Meliosma herbertii	0.52	12.1	9	78	60	57	35	44.64
P-7	30	BURSERACEAE	Tetragastris	Tetragastris altissima	0.71	13.1	7	96	102	96	43	54.98
P-7	31	BIGNONIACEAE	Jacaranda	Jacaranda copaia	0.35	15.3	9	147	78	73	38	48.69
P-7	32	EUPHORBIACEAE	Pausandra	Pausandra trianae	0.59	25.5	4	565	498	465	78	96.90
P-7	33	RUTACEAE	Galipea	Galipea trifoliata	1.00	12.1	4	78	117	110	30	38.69
P-7	34	BURSERACEAE	Tetragastris	Tetragastris altissima	0.71	10.2	2	49	52	50	7	10.40
P-7	35	FABACEAE	Vataireopsis	Vataireopsis sp	0.64	19.4	5	280	268	249	62	77.46
P-7	36	URTICACEAE	Pourouma	Pourouma minor	0.44	10.8	4	58	38	37	11	14.51
P-7	37	FABACEAE	Inga	Inga thibaudiana	0.58	13.7	6	109	95	89	33	42.96
P-7	38	URTICACEAE	Cecropia	Cecropia sciadophylla	0.39	37.4	15	1435	828	823	414	475.13
P-7	39	LAURACEAE	Endlicheria	Endlicheria rubiflora	0.50	16.9	5	192	145	135	37	47.08
P-7	40	MALVACEAE	Matisia	Matisia malacocalyx	0.48	16.6	7	183	132	123	47	60.28
P-7	41	MORACEAE	Pseudolmedia	Pseudolmedia laevigata	0.63	20.1	7	305	286	265	90	111.34
P-8	1	VIOLACEAE	Rinoreocarpus	Rinoreocarpus ulei	0.65	10.2	2	49	48	45	7	9.57
P-8	2	ARECACEAE	Iriartea	Iriartea deltoidea	0.28	25.5	13	565	232	217	118	144.14
P-8	3_	ANACARDIACEAE	Astronium	Astronium graveolens	0.86	15.6	6	156	200	187	64	80.24
P-8	4	MORACEAE	Pseudolmedia	Pseudolmedia laevis	0.62	11	4	61	56	53	15	20.54
P-8	5	FABACEAE	Dussia	Dussia tessmannii	0.56	15.9	3	164	137	128	22	28.65
P-8	6	BURSERACEAE	Protium	Protium sagotianum	0.56	16.6	4	183	152	142	31	40.42
P-8	7	MYRISTICACEAE	Iryanthera	Iryanthera laevis	0.62	13.6	5	107	98	92	29	37.55
P-8	8	FABACEAE	Tachigali	Tachigali vasquezii	0.56	17.3	9	204	170	159	76	94.88
P-8	9	CLUSIACEAE	Symphonia	Symphonia globulifera	0.62	32.6	14	1039	959	924	469	534.82
P-8	10	FABACEAE	Vataireopsis	Vataireopsis sp	0.64	10.5	1	53	51	49	4	5.19

P-8	11	URTICACEAE	Pourouma	Pourouma minor	0.44	19.6	5	286	190	176	43	55.48
P-8	12	RUBIACEAE	Capirona	Capirona decorticans	0.59	16.8	8	190	168	157	68	85.38
P-8	13	APOCYNACEAE	Tabernaemontana	Tabernaemontana cymosa	0.47	35.8	13	1295	908	892	399	458.36
P-8	14	FABACEAE	Enterolobium	Enterolobium schomburgkii	0.72	10.5	3	53	57	55	12	16.49
P-8	15	MORACEAE	Pseudolmedia	Pseudolmedia laevis	0.62	10	3	47	43	41	9	13.00
P-8	16	LECYTHIDACEAE	Eschweilera	Eschweilera coriacea	0.85	11.1	5	62	78	75	27	34.84
P-8	17	URTICACEAE	Cecropia	Cecropia sciadophylla	0.39	10.6	5	54	31	30	11	15.02
P-8	18	FABACEAE	Tachigali	Tachigali vasquezii	0.56	12.2	4	79	66	63	17	22.51
P-8	19	SALICACEAE	Casearia	Casearia sp1	0.67	12.2	4	81	81	76	20	27.08
P-8	20	BURSERACEAE	Tetragastris	Tetragastris panamensis	0.73	43.4	20	1994	2179	###	###	1519.98
P-8	21	BIGNONIACEAE	Jacaranda	Jacaranda copaia	0.35	41.3	19	1790	944	964	583	658.71
P-8	22	Malvaceae	Apeiba	Apeiba membranacea	0.28	13.2	3	100	41	39	7	10.28
P-8	23	BIGNONIACEAE	Jacaranda	Jacaranda copaia	0.35	40.7	14	1738	917	932	419	480.17
P-8	24	LAURACEAE	Aiouea	Aiouea grandifolia	0.37	14.8	4	134	74	70	16	22.02
P-8	25	BIGNONIACEAE	Jacaranda	Jacaranda copaia	0.35	39.5	20	1619	854	861	561	634.79
P-8	26	BIGNONIACEAE	Jacaranda	Jacaranda copaia	0.35	13.5	3	105	56	52	10	13.51
P-8	27	MORACEAE	Brosimum	Brosimum lactescens	0.66	48.9	20	2569	2514	###	###	1720.25
P-8	28	Malvaceae	Apeiba	Apeiba membranacea	0.28	11.1	2	63	26	25	3	5.03
P-8	29	LAURACEAE	Caryodaphnopsis	Caryodaphnopsis fosteri	0.61	26.6	12	630	573	538	263	308.95
P-8	30	FABACEAE	Inga	Inga oerstediana	0.58	11.8	2	74	64	61	. 8	11.45
P-8	31	MALVACEAE	Theobroma	Theobroma cacao	0.42	17.5	2	212	133	124	13	17.75
P-8	32	FABACEAE	Parkia	Parkia nitida	0.38	10.5	2	53	31	29	4	6.15
P-8	33	URTICACEAE	Pourouma	Pourouma guianensis	0.38	38.1	7	1492	846	844	196	233.57
P-8	34	FABACEAE	Lonchocarpus	Lonchocarpus sp	0.73	11.5	4	68	74	70	20	26.09
P-8	35	CLUSIACEAE	Symphonia	Symphonia globulifera	0.62	10.3	2	51	47	45	7	9.37
P-8	36	URTICACEAE	Cecropia	Cecropia sciadophylla	0.39	_ 29	13	780	450	426	215	254.52
P-8	37	SABIACEAE	Meliosma	Meliosma herbertii	0.52	37.4	12	1436	1104	###	441	504.75
P-8	38	MORACEAE	Clarisia	Clarisia biflora	0.47	41.2	_18	1780	1261	###	738	824.29

P-8	39	LAURACEAE	Ocotea	Ocotea puberula	0.43	16.9	7	192	124	116	44	56.08
P-8	40	MYRISTICACEAE	virola	Virola sebifera	0.46	11.7	7	72	49	46	22	29.41
P-8	41	ARECACEAE	Euterpe	Euterpe precatoria	0.41	16.3	9	176	107	100	50	63.12
P-8	42	MORACEAE	Clarisia	Clarisia biflora	0.47	30.6	14	889	630	601	316	367.47
P-8	43	BURSERACEAE	Protium	Protium aracouchini	0.49	18.1	12	234	171	159	99	121.20
P-8	44	MORACEAE	Maquira	Maquira calophylla	0.62	27.5	8	688	637	599	192	228.09
P-8	45	Malvaceae	Apeiba	Apeiba membranacea	0.28	30.9	12	912	375	358	161	192.90
P-8	46	MYRISTICACEAE	Iryanthera	Iryanthera juruensis	0.63	27.9	11	714	675	636	277	324.25
P-8	47	MORACEAE	Batocarpus	Batocarpus amazonicus	0.53	32	13	995	791	760	362	417.73
P-8	48	RUBIACEAE	Faramea	Faramea sp	0.65	10.8	1	58	56	53	4	5.55
P-9	1	SABIACEAE	Meliosma	Meliosma herbertii	0.52	23.6	9	463	356	332	131	158.85
P-9	2	SIPARUNACEAE	Siparuna	Siparuna decipiens	0.64	10.5	3	53	51	49	11	14.76
P-9	3	URTICACEAE	Cecropia	Cecropia sciadophylla	0.39	47.3	17	2395	1383	###	749	835.82
P-9	4	ELAEOCARPACEAE	Sloanea	Sloanea sinemariensis	0.81	11.7	2	72	87	82	11	15.42
P-9	5	MORACEAE	Helicostylis	Helicostylis tomentosa	0.63	24.8	4	530	496	463	79	97.79
P-9	6	URTICACEAE	Cecropia	Cecropia sciadophylla	0.39	26.3	12	613	354	332	163	196.12
P-9	7_	OCHNACEAE	Ouratea	Ouratea sp	0.73	10.8	1	57	62	59	4	6.11
P-9	8	SIPARUNACEAE	Siparuna	Siparuna decipiens	0.64	10.8	1	58	55	53	4	5.49
P-9	9_	BURSERACEAE	Tetragastris	Tetragastris panamensis	0.73	32	12	995	1087	###	459	523.90
P-9	10	ARECACEAE	Oenocarpus	Oenocarpus bataua	0.65	22	9	386	375	348	144	173.54
P-9	11	ANNONACEAE	Onychopetalum	Onychopetalum krukoffii	0.63	32.3	12	1019	961	925	404	464.22
P-9	12	ARECACEAE	Euterpe	Euterpe precatoria	0.41	17.8	15	223	135	126	99	121.31
P-9	13	URTICACEAE	Pourouma	Pourouma minor	0.44	12.3	4	82	55	52	14	18.57
P-9	14	ANNONACEAE	Xylopia	Xylopia sp	0.58	10.7	4	56	48	46	13	18.09
P-9	15	MYRISTICACEAE	Iryanthera	Iryanthera laevis	0.62	17.5	7	212	195	181	67	84.14
P-9	16	BURSERACEAE	Protium	Protium sagotianum	0.56	42.5	11	1908	1588	###	565	638.58
P-9	17	MELIACEAE	Guarea	Guarea pubescens	0.57	13.2	1	100	85	80	5	7.21
P-9	18	SAPOTACEAE	Micropholis	Micropholis egensis	0.60	15.3	5	147	132	123	36	46.03

		1	1	1	1	1 1	1		i 1	1	ı	1 1
P-9	19	BURSERACEAE	Protium	Protium sagotianum	0.56	42.1	12	1869	1555	###	604	681.11
P-9	20	LAURACEAE	Aniba	Aniba panurensis	0.61	19.7	12	292	266	247	145	175.25
P-9	21	MORACEAE	Pseudolmedia	Pseudolmedia laevigata	0.63	19.1	10	268	251	233	117	142.49
P-9	22	LAURACEAE	Aniba	Aniba panurensis	0.61	15	8	139	127	119	56	70.29
P-9	23	Malvaceae	Apeiba	Apeiba membranacea	0.28	32.6	14	1040	428	412	209	247.83
P-9	24	ARECACEAE	Euterpe	Euterpe precatoria	0.41	14.8	9	135	82	77	41	52.35
P-9	25	SIPARUNACEAE	Siparuna	Siparuna cuspidata	0.66	11.4	5	67	65	62	22	28.63
P-9	26	FABACEAE	Senna	Senna multifuga	0.58	34.7	15	1204	1046	###	535	606.95
P-9	27	MORACEAE	Clarisia	Clarisia biflora	0.47	54.1	19	3142	2226	###	###	1459.42
P-9	28	MORACEAE	Pseudolmedia	Pseudolmedia laevigata	0.63	29.6	13	823	772	733	365	421.46
P-9	29	OLACACEAE	Heisteria	Heisteria nitida	0.70	26.4	15	620_	652	612	376	433.12
P-9	30	URTICACEAE	Cecropia	Cecropia sciadophylla	0.39	36.6	17	1364	787	778	449	513.16
P-9	31	SAPOTACEAE	Chrysophyllum	Chrysophyllum sp	0.76	45.5	23	2206	2501	###	###	1967.39
P-9	32	RUBIACEAE	Coussarea	Coussarea sp	0.62	14	3	116	107	101	19	24.67
P-9	33	RUBIACEAE	Faramea	Faramea sp	0.65	11.1	3	63	61	58	12	16.71
P-9	34	MORACEAE	Pseudolmedia	Pseudolmedia macrophylla	0.66	28.2	12	730	719	679	321	372.68
P-9	35	FABACEAE	Vataireopsis	Vataireopsis sp	0.64	13.4	2	104	100	94	12	16.05
P-9	36	SIPARUNACEAE	Siparuna	Siparuna decipiens	0.64	10.4	2	52	49	47	7	9.80
P-9	37	SAPOTACEAE	Chrysophyllum	Chrysophyllum sp	0.76	58.1	19	3601	4083	###	###	2616.18
P-9	38	APOCYNACEAE	Aspidosperma	Aspidosperma parvifolium	0.78	60.8	19	3913	4562	###	###	2927.36
P-9	39	BURSERACEAE	Tetragastris	Tetragastris altissima	0.71	45.7	12	2233	2359	###	906	1001.04
P-9	40	SIPARUNACEAE	Siparuna	Siparuna decipiens	0.64	13.2	4	100	96	90	23	30.16
P-9	41	DICHAPETALACEAE	Tapura	Tapura sp	0.66	17.2	6	202	199	186	60	75.07
P-9	42	MORACEAE	Brosimum	Brosimum lactescens	0.66	16.2	7	172	168	157	61	76.96

UNIVERSIDAD NACIONAL AMAZÓNICA DE MADRE DE DIOS

Decanatura de la Facultad de Ingeniería

"Año de la Inversión para el Desarrollo Rural y la Seguridad Alimentaria"

RESOLUCIÓN DE DECANATURA Nº 213 - 2013-UNAMAD-DFI

Puerto Maldonado, 29 de Octubre de 2013

VISTO:

El Expediente Nº1611, de fecha 22 de Octubre de 2013, Carta Nº 24-2013-UNAMAD-PAZP de fecha 21 de Octubre del 2013, el Estatuto de la Universidad Nacional Amazónica de Madre de Dios, el Reglamente General de Grados y Títulos de la Universidad Nacional Amazónica de Madre de Dios, y:

CONSIDERANDO:

Que, la Universidad Nacional Amazónica de Madre de Dios, fue creada mediante Ley Nº 27297, de fecha 05 de julio del año 2000 y mediante Resolución Nº 626–2009–CONAFU, de fecha 27 de Noviembre de 2009, se otorga la Autorización Definitiva para su funcionamiento.

Que, el Reglamento General de Grados y Títulos de la Universidad Nacional Amazónica de Madre de Dios, aprobado mediante Resolución Nº 038 – 2012 –UNAMAD - COyG, de fecha 27 de Enero del 2012, establece la finalidad, criterios y regula el procedimiento para conferir Grados Académicos y Títulos profesionales en la Universidad Nacional Amazónica de Madre de Dios.

Que, de acuerdo a lo establecido por el Artículo 54° del Estatuto de la Universidad Nacional Amazónica de Madre de Dios, precisa que "Para optar El Título Profesional se requiere: a. Poseer el Grado Académico de Bachiller. b. Cumplir con los demás requisitos que establece la Ley y el Reglamento General de Grados y Títulos de la Universidad. Haber cumplido con una de las siguientes modalidades de acuerdo a Ley y el Reglamento General de Grados y Títulos de la Universidad Nacional Amazónica de Madre de Dios, como lo estipula el artículo 23° bajo la Modalidad A: Elaboración, sustentación, defensa y aprobación de un trabajo de investigación (Tesis), conforme al artículo 22° de la Ley Universitaria Nº 23733, sus modificatorias y ampliatorias.

Que mediante Resolución Nº 0622-2013-ANR, del 24 de abril del 2013 la ANR resuelve: Articulo 1: Declarar en conflicto de Gobernabilidad a la UNAMAD, en aplicación de las leyes 27602 y 26490; Articulo 2: Designar una comisión de intervención con atribuciones de reorganización para la UNAMAD, con el cese de autoridades, encargada de finalizar el proceso de institucionalización y que garantice el normal funcionamiento de los órganos de gobierno por el plazo de dos años.

Que mediante Carta Nº 24-2013-UNAMAD-PAZP de fecha 21 de Octubre del 2013. La Comisión Ad-hoc Presidida por el Ph. D. Percy Amilcar Zevallos Pollito, el Secretario de Comisión Ing. Mishari Rolando García Roca y la Vocal Mgt. Blga. Ruth Frisancho Vargas, informan a la Decana de la Facultad de Ingenieria M.Sc. Ing. María Isabel Cajo Pinche, el levantamiento de observaciones del informe de tesis intitulado "DETERMINACION DE LA RESERVA DE CARBONO EN UN BOSQUE DE TERRAZA ALTA MEDIANTE EL METODO DE ECUACIONES ALOMETRICAS. FUNDO EL BOSQUE-LAS PIEDRAS- MADRE DE DIOS", presentado por las Bachilleres: Leticia Huamán Briceño y Nemin Bejar Chura. Dando conformidad a la naturaleza del trabajo de investigación, han emitido opinión favorable al Informe Final de Tesis, así mismo proponen como fecha de sustentación para el día 30 de Octubre del 2013 a horas 17:00 horas en el anfiteatro del primer piso de la ciudad universitaria , y:

Estando dentro de las atribuciones conferidas a la Decana, por la Ley Universitaria Nº 23733; el Estatuto de la Universidad Nacional Amazónica de Madre de Dios y en uso de las atribuciones conferidas mediante Resolución Nº 037-2013-UNAMAD-C.I.-CU de fecha 12 de Junio del año 2013.

SE RESUELVE:

ARTÍCULO PRIMERO: DESIGNAR como Miembros del Jurado para la sustentación del trabajo de tesis intitulado "DETERMINACIÓN DE LA RESERVA DE CARBONO EN UN BOSQUE DE TERRAZA ALTA MEDIANTE EL METODO DE ECUACIONES ALOMETRICAS, FUNDO EL BOSQUE-LAS PIEDRAS-MADRE DE DIOS", presentado por las Bachilleres: Leticia Huamán Briceño y Nemin Bejar Chura., a los docentes:

UNIVERSIDAD NACIONAL AMAZÓNICA DE MADRE DE DIOS

Decanatura de la Facultad de Ingeniería "Año de la Inversión para el Desarrollo Rural y la Seguridad Alimentaria"

RESOLUCIÓN DE DECANATURA Nº 213 - 2013-UNAMAD-DFI

Puerto Maldonado, 29 de Octubre de 2013

• Presidente

: Ph.D. Percy Amilcar Zevallo Pollito.

· Secretario

: Ing. Mishari Rolando García Roca.

Vocal

: Mgt. Blga. Ruth Frisancho Vargas.

ARTÍCULO SEGUNDO: ESTABLECER FECHA, para el "Acto de Sustentación" de la Tesis antes mencionada, el miércoles 30 de octubre del 2013 a horas 17:00 horas, en el anfiteatro 01 de la UNAMAD.

ARTICULO TERCERO: NOTIFICAR, la presente resolución al interesado, Miembros del Jurado de Tesis y Asesor(s), para dar cumplimiento, conformidad y viabilidad de acuerdo al Reglamento General de Grados y Títulos de la UNAMAD, y remita el informe de aprobación o recomendación a la Decanatura de la Facultad de Ingeniería, para los tramites y fines pertinentes.

REGÍSTRESE, COMUNÍQUESE Y ARCHÍVESE

WIND TO SHOW THE STATE OF THE S

UNIVERSIDAD MACIONAL AMAZÓNICA DE MDD

DECAMA (e)

nche

UNIVERSIDAD NACIONAL AMAZONICA DE MOD FACULTAD DE INCENIERIA

> Sc. Rox s. . s. Lucu são Portille SECRETARIA ACADÉMICA

Cc Jurados Asesor Interesados MICP/Decana RMP/SA

ACTA DE SUSTENTACIÓN PARA OPTAR RL TÍTULO PROFESIONAL DE INGENIERO FORESTAL Y MEDIO AMBIENTE

En la ciudad de puerto Maldonado, siendo las 17 horas con cero minutos del día treinta de octubre del año dos mil trece, en las instalaciones del anfiteatro del primer piso de la ciudad universitaria dando cumplimiento a la resolución N° 213-2013-UNAMAD-DFI, de fecha 29 de octubre del 2013, se reunieron los miembros del jurado integrado por los siguientes docentes:

Ph.D. Percy Amílcar Zevallos Pollito

Ing. Mishari Rolando García Roca

Mgt. Ruth Frisancho Vargas

En fe de lo cual firmamos la presente acta, siendo las siendo las 17 horas con treinta minutos del día treinta de octubre del año 2013, se dio culminada el presente acto de sustentación.

El sustentante deberá levantar todas las observaciones realizadas por los miembros del jurado calificador.

Ph.D. Percy Amílcar Zevallos Pollito Presidente de la comisión Ing. Mishari García Roca Secretario

Blga. Ruth Frisancho Vargas Vocal